【題目】閱讀題.
材料一:若一個整數m能表示成a2-b2(a,b為整數)的形式,則稱這個數為“完美數”.例如,3=22-12,9=32-02,12=42-22,則3,9,12都是“完美數”;再如,M=x2+2xy=(x+y)2-y2,(x,y是整數),所以M也是”完美數”.
材料二:任何一個正整數n都可以進行這樣的分解:n=p×q(p、q是正整數,且p≤q).如果p×q在n的所有這種分解中兩因數之差的絕對值最小,我們就稱p×q是n的最佳分解,并且規定F(n)=.例如18=1×18=2×9=3×6,這三種分解中3和6的差的絕對值最小,所以就有F(18)=
.請解答下列問題:
(1)8______(填寫“是”或“不是”)一個完美數,F(8)= ______.
(2)如果m和n都是”完美數”,試說明mn也是完美數”.
(3)若一個兩位數n的十位數和個位數分別為x,y(1≤x≤9),n為“完美數”且x+y能夠被8整除,求F(n)的最大值.
【答案】(1)是,;(2)說明見解析; (3)
.
【解析】
(1)利用“完美數”的定義可得;
(2)根據完全平方公式,可證明mn是“完美數”;
(3)兩個一位數相加能被8整除,說明x+y=8或16, 這樣可得正整數n為79,97,88,71,17,26,62,35,53,44共10種, 根據n為“完美數”可把n=26和n=62舍去,再根據n的最佳分解確定出F(n)的最大值.
(1) )∵8=32-12
∴8是完美數,
F(8)==
故答案為:是, .
(2)設m=, n=
,其中a,b,c,d均為整數,
則mn= ()(
)
=
=
∵a,b,c,d均為整數
∴ac+bd與ad+bc也是整數,即mn是“完美數”.
(3) ∵兩個一位數相加能被8整除,
∴ x+y=8或16,
∴n=79或97或88或71或17或26或62或35或53或44,
∵n為“完美數”,
∴n=79或97或88或71或17或35或53或44,
其中F(79)=,F(97)=
,F(88)=
, F(71)=
, F(17)=
, F(35)=
, F(53)=
, F(44)=
,
∴F(n)的最大值為.
科目:初中數學 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調查(每位同學只選最關注的一個),根據調查結果繪制了兩幅不完整的統計圖.根據圖中提供的信息,解答下列問題:
(1)這次調查的學生共有多少名?
(2)請將條形統計圖補充完整,并在扇形統計圖中計算出“進取”所對應的圓心角的度數.
(3)如果要在這5個主題中任選兩個進行調查,根據(2)中調查結果,用樹狀圖或列表法,求恰好選到學生關注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AC=BC,∠ACB=120°,點D在AB邊上運動(D不與A、B重合),連結CD.作∠CDE=30°,DE交AC于點E.
(1)當DE∥BC時,△ACD的形狀按角分類是直角三角形;
(2)在點D的運動過程中,△ECD的形狀可以是等腰三角形嗎?若可以,請求出∠AED的度數;若不可以,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二維碼已經給我們的生活帶來了很大方便,它是由大小相同的黑白兩色的小正方形(如圖中C型黑白一樣)按某種規律組成的一個大正方形。現有25×25格式的正方形如圖,角上是三個7×7的A型大黑白相間正方形,中間右下有一個5×5的B型黑白相間正方形((A,B型均由C型黑白兩色小正方形組成),除這4個正方形外,其他的C型小正方形黑色塊數正好是白色塊數的3倍多53塊,則該25×25格式的二維碼中除去A、B型后,有__塊C型白色小正方形,整個二維碼中共有__塊C型白色小正方形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于函數y= ,下列說法錯誤的是( )
A.這個函數的圖象位于第一、第三象限
B.這個函數的圖象既是軸對稱圖形又是中心對稱圖形
C.當x>0時,y隨x的增大而增大
D.當x<0時,y隨x的增大而減小
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點B、C、D都在⊙O上,過C點作CA∥BD交OD的延長線于點A,連接BC,∠B=∠A=30°,BD=2 .
(1)求證:AC是⊙O的切線;
(2)求由線段AC、AD與弧CD所圍成的陰影部分的面積.(結果保留π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)在圖中作出△ABC關于直線m對稱的△A′B′C′,并寫出A′、B′、C′三點的坐標(2)猜想:坐標平面內任意點P(x,y)關于直線m對稱點P′的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知反比例函數y= 的圖象經過點A,點O是坐標原點,OA=2且OA與x軸的夾角是60°.
(1)試確定此反比例函數的解析式;
(2)將線段OA繞O點順時針旋轉30°得到線段OB,判斷點B是否在此反比例函數的圖象上,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從甲地到乙地,先是一段平路,然后是一段上坡路。小明騎車從甲地出發,到達乙地后立即原路返回甲地,途中休息了一段時間。假設小明騎車在平路、上坡、下坡時分別保持勻速前進.已知小明騎車上坡的速度比平路上的速度每小時少5km,下坡的速度比在平路上的速度每小時多5km。設小明出發xh后,到達離甲地y km的地方,圖中的折線OABCDE表示y與x之間的函數關系.
(1)小明騎車在平路上的速度為 km/h;他途中休息了 h;
(2)求線段AB,BC所表示的y與之間的函數關系式;
(3)如果小明兩次經過途中某一地點的時間間隔為0.15h,那么該地點離甲地多遠?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com