【題目】小敏家對面新建了一幢圖書大廈,小敏在自家窗口測得大廈頂部的仰角為45°,大廈底部的仰角為30°,如圖所示,量得兩幢樓之間的距離為20 米.
(1)求出大廈的高度BD;
(2)求出小敏家的高度AE.
【答案】
(1)
解:如圖,∵AC⊥BD,
∴BD⊥DE,AE⊥DE,
∴四邊形AEDC是矩形,
∴AC=DE=20 米,
∵在Rt△ABC中,∠BAC=45°,
∴BC=AC=20 米,
在Rt△ACD中,tan30°= ,
∴CD=ACtan30°=20 ×
=20(米),
∴BD=BC+CD=20 +20(米);
∴大廈的高度BD為:(20 +20)米
(2)
解:∵四邊形AEDC是矩形,
∴AE=CD=20米.
∴小敏家的高度AE為20米
【解析】(1)易得四邊形AEDC是矩形,即可求得AC的長,然后分別在Rt△ABC與Rt△ACD中,利用三角函數的知識求得BC與CD的長,繼而求得答案;(2)結合(1),由四邊形AEDC是矩形,即可求得小敏家的高度AE.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中(如圖每格一個單位),描出下列各點A(﹣2,﹣1),B(2,﹣1),C(2,2),D(3,2),E(0,3),F(﹣3,2),G(﹣2,2),A(﹣2,﹣1)并依次將各點連接起來,觀察所描出的圖形,它像什么?根據圖形回答下列問題:
(1)圖形中哪些點在坐標軸上,它們的坐標有什么特點?
(2)線段FD和x軸有什么位置關系?點F和點D的坐標有什么特點?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A( ,1)在反比例函數y=
的圖象上.
(1)求k的值;
(2)若將△BOA繞點B按逆時針方向旋轉60°,得到△BDE,判斷點E是否在該反比例函數的圖象上,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,圖中的小方格都是邊長為1的正方形,△ABC的頂點坐標分別為:A(-3,0),B(-1,-2),C(-2,2).
(1)請在圖中畫出△ABC繞B點順時針旋轉90°后的圖形△A′BC′.
(2)請直接寫出以A′、B、C′為頂點平行四邊形的第4個頂點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一條不完整的數軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示.設點A,B,C所對應數的和是p.
(1)若以B為原點,寫出點A,C所對應的數,并計算p的值;若以C為原點,p又是多少?
(2)若原點O在圖中數軸上點C的右邊,且CO=28,求p.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E是△ABC中BC邊上的一點,且BE= BC;點D是AC上一點,且AD=
AC,S△ABC=24,則S△BEF﹣S△ADF=( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先閱讀下列解題過程,然后解答問題
解方程:|x+3|=2.
解:當x+3≥0時,原方程可化為:x+3=2,解得x=﹣1
當x+3<0時,原方程可化為:x+3=﹣2,解得x=﹣5
所以原方程的解是x=﹣1,x=﹣5
(1)解方程:|3x﹣2|﹣4=0;
(2)探究:當b為何值時,方程|x﹣2|=b ①無解;②只有一個解;③有兩個解.
(3)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題6分)某市對一大型超市銷售的甲、乙、丙3種大米進行質量檢測.共抽查大米200袋,質量評定分為A、B兩個等級(A級優于B級),相應數據的統計圖如下:
根據所給信息,解決下列問題:
(1)a=_______,b=_______.
(2)已知該超市現有乙種大米750袋,根據檢測結果,請你估計該超市乙種大米中有多少袋B級大米?
(3)對于該超市的甲種和丙種大米,你會選擇購買哪一種?請簡述理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com