【題目】某公司經銷一種商品,每件成本為20元.經市場調查發現,在一段時間內,銷售量w(件)隨銷售單價x(元/件)的變化而變化,具體關系式為:w=-10x+500.設這種商品在這段時間內的銷售利潤為y(元),解答下列問題:
(1)求y與x的函數關系式;
(2)當x取何值時,利潤最大?最大利潤為多少元?
(3)如果物價部門規定這種商品的銷售單價不得高于32元/件,公司想要在這段時間內獲得2000元的銷售利潤,銷售單價應定為多少元?
【答案】(1)y=-10x2+700x-10000;(2)當x=35時,最大利潤2250元;(3)銷售單價應定為30元.
【解析】
(1)根據總利潤=單件利潤×銷售量可得;
(2)根據二次函數的性質可得;
(3)根據題意列出方程求解,再結合題意取舍即可.
.解:(1)由題意得:y=(x-20)(-10x+500)=-10x2+700x-10000;
(2)根據二次函數的性質可知,當x==35時,利潤最大,
將x=35代入可得:y最大值=-10×35×35+700×35-10000=2250(元);
答:當x=35時,利潤最大,最大利潤為2250元;
③根據題意可得:-10x2+700x-10000=2000,
解得:x1=30,x2=40.
∵x≤32,
∴x=30,
答:銷售單價應定為30元.
科目:初中數學 來源: 題型:
【題目】如圖所示,二次函數y=ax2+bx+c(a≠0)的圖象,有下列4個結論:①abc>0;②b>a+c;③4a+2b+c>0;④b2-4ac>0;其中正確的個數有( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于反比例函數,下列說法不正確的是( )
A. 函數圖象分別位于第一、第三象限
B. 當x>0時,y隨x的增大而減小
C. 若點A(x1,y1),B(x2,y2)都在函數圖象上,且x1<x2,則y1>y2
D. 函數圖象經過點(1,2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在銳角△ABC中,AB=5,tanC=3,BD⊥AC于點D,BD=3,點P從點A出發,以每秒1個單位長度的速度沿AB向終點B運動,過點P作PE∥AC交邊BC于點E,以PE為邊作Rt△PEF,使∠EPF=90°,點F在點P的下方,且EF∥AB.設△PEF與△ABD重疊部分圖形的面積為S(平方單位)(S>0),點P的運動時間為t(秒)(t>0).
(1)直接寫出線段AC的長為 .
(2)當△PEF與△ABD重疊部分圖形為四邊形時,求S與t之間的函數關系式,并寫出t的取值范圍.
(3)若邊EF所在直線與邊AC交于點Q,連結PQ,如圖2,
①當PQ將△PEF的面積分成1:2兩部分時,求AP的長.
②直接寫出△ABC的某一頂點到P、Q兩點距離相等時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系xOy中,雙曲線y=(x>0)與直線y=kx-k的交點為點A(m,2).
(1) 求k的值;
(2) 當x>0時,直接寫出不等式kx-k ≤的解集:_ ;
(3) 設直線y=kx-k與y軸交于點B,若C是x軸上一點,且滿足△ABC的面積是4,求點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景:如圖,將繞點
逆時針旋轉60°得到
,
與
交于點
,可推出結論:
問題解決:如圖,在中,
,
,
.點
是
內一點,則點
到
三個頂點的距離和的最小值是___________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=
AD⑤S△APO=
,正確的個數是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣1,0)和B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點,分別連接AC、CD、AD.
(1)求拋物線的函數表達式以及頂點D的坐標;
(2)在拋物線上取一點P(不與點C重合),并分別連接PA、PD,當△PAD的面積與△ACD的面積相等時,求點P的坐標;
(3)將(1)中所求得的拋物線沿A、D所在的直線平移,平移后點A的對應點為A′,點C的對應點為C′,點D的對應點為D′,當四邊形AA′C′C是菱形時,求此時平移后的拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖在單位長度為1的正方形網格中,一段圓弧經過網格的交點A、B、C.
(1)請完成如下操作:
①以點O為坐標原點、豎直和水平方向為軸、網格邊長為單位長,建立平面直角坐標系; ②根據圖形提供的信息,標出該圓弧所在圓的圓心D,并連接AD、CD.
(2)請在(1)的基礎上,完成下列填空:
①寫出點的坐標:C 、D ;
②⊙D的半徑= (結果保留根號);
③若E(7,0),試判斷直線EC與⊙D的位置關系,并說明你的理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com