【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且經A(1,0)、
B(0,﹣3)兩點.(1)求拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上,是否存在點M,使它到點A的距離與到點B的距離之和最小,如果存在求出點M的坐標,如果不存在請說明理由.
【答案】(1) y=x2+2x﹣3;(2) 存在,理由見解析.
【解析】試題分析:(1)利用待定系數法即可求得函數的解析式;
(2)拋物線與x軸的除A外的另一個交點C就是A的對稱點,則BC與對稱軸的交點就是M,首先求得C的坐標,然后求得BC的解析式,進而求得M的坐標.
試題解析:解:(1)根據題意得: ,解得:
,則二次函數的解析式是y=x2+2x﹣3;
(2)存在.設拋物線與x軸的另一個交點是C,由拋物線的對稱性得BC與對稱軸的交點就是M.∵C點的坐標是(﹣3,0),設直線BC的解析式是y=kx﹣3,則0=﹣3k﹣3,解得k=﹣1,∴直線BC的解析式是y=﹣x﹣3.
當x=﹣1時,y=﹣2,∴點M的坐標是(﹣1,﹣2).
科目:初中數學 來源: 題型:
【題目】小明將連續的奇數1,3,5,7,9,…,排成如圖所示的數陣,用一個矩形框框住其中的9個數,如圖所示.
(1)矩形陰影框中的9個數的和與中間一個數存在怎樣的關系?(直接寫出笞案)
(2)若將矩形框上下左右移動,這個關系還成立嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,,點G,H分別在邊AB,DC上,且HA=HG,點E為AB邊上的一個動點,連接HE,把△AHE沿直線HE翻折得到△FHE.
(1)如圖1,當DH=DA時,
①填空:∠HGA= 度;
②若EF∥HG,求∠AHE的度數,并求此時a的最小值;
(2)如圖3,∠AEH=60°,EG=2BG,連接FG,交邊FG,交邊DC于點P,且FG⊥AB,G為垂足,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《九章算術》是中國古代數學專著,在數學上有其獨到的成就,不僅最早提到了分數問題,也首先記錄了“盈不足”等問題.如有一道闡述“盈不足”的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六.問人數、雞價各幾何?譯文為:現有若干人合伙出錢買雞,如果每人出9文錢,就會多11文錢;如果每人出6文錢,又會缺16文錢.問買雞的人數、雞的價格各是多少?請解答上述問題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐
如圖1,和
都是等腰直角三角形,其中
,點
在線段
上.
操作發現:如圖2,保持點不動,
繞點
按順時針旋轉角度
(
),連接
與
.
(1)猜想線段,
之間的數量關系,并說明理由;
拓展探究:如圖3,繞點
繼續按順時針旋轉,當點
,
,
在同一直線上時,過點
作
,垂足為
.
(2)求的度數;
(3)直接寫出線段,
,
之間的的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,CD⊥AB于點D,DA=DC=4,DB=2,AF⊥BC于點F,交DC于點E.
(1)求線段AE的長;
(2)若點G是AC的中點,點M是線段CD上一動點,連結GM,過點G作GN⊥GM交直線AB于點N,記△CGM的面積為S1,△AGN的面積為S2.在點M的運動過程中,試探究:S1與S2的數量關系
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點E在邊BC上,如果點F是邊AD上的點,那么△CDF與△ABE不一定全等的條件是( )
A. DF=BE B. AF=CE
C. CF=AE D. CF∥AE
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某體育用品商店老板到體育商場批發籃球、足球、排球共個,得知該體育商場籃球、足球、排球平均每個
元,籃球比排球每個多
元,排球比足球每個少
元.
(1) 求出這三種球每個各多少元;
(2) 經決定,該老板批發了這三種球的任意兩種共個,共花費了1060元,問該老板可能買了哪兩種球?各買了幾個;
(3) 該老板打算將每一種球各提價元后,再進行打折銷售,若排球、足球打八折,籃球打八五折,在(2)的情況下,為獲得最大利潤,他批發的一定是哪兩種球?各買了幾個?計算并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將下列各式配成完全平方式:
①x2+6x+______=(x+____)2 ②x2-5x+_____=(x-____)2;
③x2+ x+______=(x+____)2 ④x2-9x+_____=(x-____)2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com