精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平行四邊形中,的平分線交于邊上一點,且,則的長是(

A.3B.4C.5D.2.5

【答案】D

【解析】

ABCD中,∠ABC和∠BCD的平分線交于AD邊上一點E,易證得ABECDE是等腰三角形,BEC是直角三角形,則可求得BC的長,繼而求得答案.

∵四邊形ABCD是平行四邊形,

ADBC,AB=CD,AD=BC,

∴∠AEB=CBE,∠DEC=BCE,∠ABC+DCB=90°,

BE,CE分別是∠ABC和∠BCD的平分線,

∴∠ABE=CBE=ABC,∠DCE=BCE=DCB,

∴∠ABE=AEB,∠DCE=DEC,∠EBC+ECB=90°,

AB=AECD=DE,

AD=BC=2AB,

BE=4CE=3,

BC=,

AB=BC=2.5.

故選D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發,沿北偏東45°方向勻速駛離港口P,4小時后貨船在小島的正東方向.求貨船的航行速度.(精確到0.1海里/時,參考數據:≈1.41,≈1.73)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC,AB=BC,ABC=90°,BMAC邊上的中線,D,E分別在邊ACBC,DB=DE,DEBM相交于點N,EFAC于點F,以下結論:

①∠DBM=CDE;SBDE<S四邊形BMFE;CD·EN=BN·BD;AC=2DF.

其中正確結論的個數是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB⊙O的直徑,CD⊙O相切于點C,與AB的延長線交于點D,DE⊥AD且與AC的延長線交于點E.

(1)求證:DC=DE;

(2)若,AB=3,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AOOM,OA=8,點B為射線OM上的一個動點,分別以OB、AB為直角邊,B為直角頂點,在OM兩側作等腰RtOBF、等腰RtABE,連接EFOMP點,當點B在射線OM上移動時,PB的長度是 ( )

A. 3.6 B. 4 C. 4.8 D. PB的長度隨B點的運動而變化

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】函數yy在第一象限內的圖象如圖,點Py的圖象上一動點,PCx軸于點C,交y的圖象于點B.給出如下結論:①△ODBOCA的面積相等;②PAPB始終相等;③四邊形PAOB的面積大小不會發生變化;④CAAP.其中所有正確結論的序號是( 。

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊ACD,等邊ABE已知BAC=30°,EFAB,垂足為F,連接DF

(1)試說明AC=EF;

(2)求證:四邊形ADFE是平行四邊形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)如圖所示,下列結論中:

①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).

其中正確的結論有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數學課上,李老師出示了如下框中的題目.

在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關系,并說明理由.

小敏與同桌小聰討論后,進行了如下解答:

(1)特殊情況,探索結論

當點E為AB的中點時,如圖1,確定線段AE與的DB大小關系.請你直接寫出結論:

AE DB(填“>”,“<”或“=”).

圖1 2

(2)特例啟發,解答題目

解:題目中,AE與DB的大小關系是:AE DB(填“>”,“<”或“=”).

理由如下:如圖2,過點E作EFBC,交AC于點F.

(請你完成以下解答過程)

(3)拓展結論,設計新題

在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若ABC的邊長為1,AE=2,求CD的長(請你直接寫出結果).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视