【題目】如圖,已知,
,點D在邊BC上
與B,C不重合
,四邊形ADEF為正方形,過點F作
,交CA的延長線于點G,連接FB,交DE于點Q,得出以下結論:
;
:2;
;
其中正確結論的個數是
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】分析:由正方形的性質得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;
證明四邊形CBFG是矩形,得出S△FAB=FBFG=
S四邊形CBFG,②正確;
由等腰直角三角形的性質和矩形的性質得出∠ABC=∠ABF=45°,③正確;
證出△ACD∽△FEQ,得出對應邊成比例,得出DFE=AD2=FQAC,④正確.
詳解:∵四邊形ADEF為正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,
,
∴△FGA≌△ACD(AAS),
∴AC=FG,故①正確;
∵BC=AC,
∴FG=BC,
∵∠ACB=90°,FG⊥CA,
∴FG∥BC,
∴四邊形CBFG是矩形,
∴∠CBF=90°,S△FAB=FBFG=
S四邊形CBFG,故②正確;
∵CA=CB,∠C=∠CBF=90°,
∴∠ABC=∠ABF=45°,故③正確;
∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ,
∴AC:AD=FE:FQ,
∴ADFE=AD2=FQAC,故④正確;
故選:D.
科目:初中數學 來源: 題型:
【題目】實驗中學學生在學習等腰三角形性質“三線合一”時
(1)(探究發現)如圖1,在△ABC中,若AD平分∠BAC,AD⊥BC時,可以得出AB=AC,D為BC中點,請用所學知識證明此結論.
(2)(學以致用)如果Rt△BEF和等腰Rt△ABC有一個公共的頂點B,如圖2,若頂點C與頂點F也重合,且∠BFE=∠ACB,試探究線段BE和FD的數量關系,并證明.
(3)(拓展應用)如圖3,若頂點C與頂點F不重合,但是∠BFE=∠ACB仍然成立,(學以致用)中的結論還成立嗎?證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點C是AB的中點,點D是BC的中點,現給出下列等式:①CD=AC-DB,②CD=AB,③CD=AD-BC,④BD=2AD-AB.其中正確的等式編號是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把放置在量角器上,
與量角器的中心重合,讀得射線
、
分別經過刻度
和
,把
繞點
逆時針方向旋轉到
,下列結論:
①;
②若射線經過刻度
,則
與
互補;
③若,則射線
經過刻度45.
其中正確的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,為直線
上一點,過點
作射線
,
,將一直角三角板(
)的直角頂點放在點
處,一邊
在射線
上,另一邊
與
都在直線
的上方.
(1)將圖1中的三角板繞點以每秒
的速度沿順時針方向旋轉一周.如圖2,經過
秒后,邊
恰好平分
.求
的值;
(2)在(1)問條件的基礎上,若三角板在轉動的同時,射線也繞
點以每秒
的速度沿順時針方向旋轉一周,如圖3,那么經過多長時間
平分
?請說明理由;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從左到右,在每個小格子中都填入一個整數,使得其中任意三個相鄰格子中所填整數之和都相等.
(1)可求得x=___,第2009個格子中的數為___;
(2)判斷:前m個格子中所填整數之和是否可能為2018?若能,求出m的值;若不能,請說明理由;
(3)如果a,b為前三個格子中的任意兩個數,那么所有的|ab|的和可以通過計算|9&|+|9#|+|&#|+|&9|+|#9|+|#&|得到,若a,b為前19個格子中的任意兩個數,則所有的|ab|的和為___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了推動陽光體育運動的廣泛開展,引導學生走向操場,積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用,現從各年級隨機抽取了部分學生的鞋號,繪制了統計圖①和圖②,請根據相關信息,解答下列問題:
(1)本次接受隨機抽樣調查的學生人數為______,圖①中的值為_____;
(2)本次調查獲取的樣本數據的眾數為______,中位數為________;
(3)根據樣本數據,若學校計劃購買200雙運動鞋,建議購買35號運動鞋多少雙?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是
A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨
B. “拋一枚硬幣正面朝上的概率為”表示每拋2次就有一次正面朝上
C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D. “拋一枚正方體骰子,朝上的點數為2的概率為”表示隨著拋擲次數的增加,“拋出朝上的點數為2”這一事件發生的頻率穩定在
附近
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與反比例函數
的圖象交于
、
兩點,與
軸交于點
,已知點
的坐標為
.
(1)求反比例函數的解析式;
(2)若點是反比例函數圖象上一點,過點
作
軸于點
,延長
交直線
于點
,求
的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com