【題目】如圖,在⊙O中,分別將弧AB、弧CD沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,若⊙O的半徑為4,則四邊形ABCD的面積是__________________.
【答案】
【解析】
作OH⊥AB,延長OH交于E,反向延長OH交CD于G,交
于F,連接OA、OB、OC、OD,根據折疊的對稱性及三角形全等,證明AB=CD,又因AB∥CD,所以四邊形ABCD是平行四邊形,由平行四邊形面積公式即可得解.
如圖,作OH⊥AB,垂足為H,延長OH交于E,反向延長OH交CD于G,交
于F,連接OA、OB、OC、OD,則OA=OB=OC=OD=OE=OF=4,
∵弧AB、弧CD沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,
∴OH=HE=,OG=GF=
,即OH=OG,
又∵OB=OD,
∴Rt△OHB≌Rt△OGD,
∴HB=GD,
同理,可得AH=CG= HB=GD
∴AB=CD
又∵AB∥CD
∴四邊形ABCD是平行四邊形,
在Rt△OHA中,由勾股定理得:
AH=
∴AB=
∴四邊形ABCD的面積=AB×GH=.
故答案為: .
科目:初中數學 來源: 題型:
【題目】某市教委為了讓廣大青少年學生走向操場、走進自然、走到陽光下,積極參加體育鍛煉,啟動了“學生陽光體育運動”,其中有一項是短跑運動,短跑運動可以鍛煉人的靈活性,增強人的爆發力,因此張明和李亮在課外活動中報名參加了百米訓練小組.在近幾次百米訓練中,教練對他們兩人的測試成績進行了統計和分析,請根據圖表中的信息解答以下問題:
成績統計分析表
(1)張明第2次的成績為__________秒;
(2)請補充完整上面的成績統計分析表;
(3)現在從張明和李亮中選擇一名成績優秀的去參加比賽,若你是他們的教練,應該選擇誰? 請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點的坐標為
,點
,
分別在
軸,
軸的正半軸上運動,且
,下列結論:
①
②當時四邊形
是正方形
③四邊形的面積和周長都是定值
④連接,
,則
,其中正確的有( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】疫情爆發,某企業準備轉型生產口罩.該企業在市場上物色到兩種生產口罩的設備,若采購2臺
型設備,5臺
型設備則共需要430萬元;若采購5臺
型設備,2臺
型設備則共需要550萬元.已知
型設備每臺每天可以生產19萬片
口罩;
型設備每臺每天可以生產8萬片
口罩.
(1)求、
兩型設備的采購單價分別是多少萬元/臺?
(2)該企業準備采購、
兩型設備共10臺,但能用來采購設備的資金不超過700萬元,那么如何安排采購方案,用這些設備每天生產的
口罩最多?每天最多可生產多少萬片
口罩?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了落實國務院的指示精神,地方政府出臺了一系列“三農”優惠政策,使農民收入大幅度增加.某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發現,該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:. 設這種產品每天的銷售利潤為w元.
(1)求w與x之間的函數關系式;
(2)該產品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形是
的內接四邊形,
,
,垂足為
.
(1)如圖1,求證:;
(2)如圖2,點在
的延長線上,且
,連接
、
,求證:
;
(3)如圖3,在(2)的條件下,若,
,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,O為坐標原點,點B在x軸的正半軸上,四邊形OACB是平行四邊形..反比例函數
在第一象限內的圖象經過點A,交BC的中點F.且
.
(1)求k值和點C的坐標;
(2)過點F作EF∥OB,交OA于點E(如圖②),點P為直線EF上的一個動點,連接PA,PO.是否存在這樣的點P,使以P、O、A為頂點的三角形是直角三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com