【題目】在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標系.若直線l的極坐標方程為 ,曲線C的極坐標方程為:ρsin2θ=cosθ,將曲線C上所有點的橫坐標縮短為原來的一半,縱坐標不變,然后再向右平移一個單位得到曲線C1 . (Ⅰ)求曲線C1的直角坐標方程;
(Ⅱ)已知直線l與曲線C1交于A,B兩點,點P(2,0),求|PA|+|PB|的值.
【答案】解:(I)曲線C的極坐標方程為:ρsin2θ=cosθ,即ρ2sin2θ=ρcosθ,化為直角坐標方程:y2=x. 將曲線C上所有點的橫坐標縮短為原來的一半,縱坐標不變,然后再向右平移一個單位得到曲線C1:y2=2(x﹣1).
(II)直線l的極坐標方程為 ,展開可得:
ρ(cosθ+sinθ)﹣2=0,可得直角坐標方程:x+y﹣2=0.
可得參數方程: (t為參數).
代入曲線C1的直角坐標方程可得:t2+2 t﹣4=0.
解得t1+t2=﹣2 ,t1t2=﹣4..
∴|PA|+|PB|=|t1﹣t2|= =
=
.
【解析】(I)曲線C的極坐標方程為:ρsin2θ=cosθ,即ρ2sin2θ=ρcosθ,化為直角坐標方程:y2=x,通過變換可得曲線C1的方程. (II)直線l的極坐標方程為 ,展開可得:
ρ(cosθ+sinθ)﹣2=0,利用互化公式可得直角坐標方程.可得參數方程:
(t為參數),代入曲線C1的直角坐標方程可得:t2+2
t﹣4=0,利用|PA|+|PB|=|t1﹣t2|=
即可得出.
科目:初中數學 來源: 題型:
【題目】暴雨過后,某地遭遇山體滑坡,武警總隊派出一隊武警戰士前往搶險.半小時后,第二隊前去支援,平均速度是第一隊的1.5倍,結果兩隊同時到達.已知搶險隊的出發地與災區的距離為90千米,兩隊所行路線相同,問兩隊的平均速度分別是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個批發商銷售成本為20元/千克的某產品,根據物價部門規定:該產品每千克售價不得超過90元,在銷售過程中發現的售量y(千克)與售價x(元/千克)滿足一次函數關系,對應關系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數關系式;
(2)該批發商若想獲得4000元的利潤,應將售價定為多少元?
(3)該產品每千克售價為多少元時,批發商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】函數 ,則f(x)在[0,k]的最大值h(k)=( )
A.2ln2﹣2﹣(ln2)3
B.﹣1
C.2ln2﹣2﹣(ln2)2k
D.(k﹣1)ek﹣k3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣x,g(x)=ex﹣ax﹣1(e為自然對數的底數).
(1)討論函數g(x)的單調性;
(2)當x>0時,f(x)≤g(x)恒成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com