【題目】一元二次方程指:含有一個未知數,且未知數的最高次數為2的等式,求一元二次方程解的方法如下:第一步:先將等式左邊關于x的項進行配方,
,第二步:配出的平方式保留在等式左邊,其余部分移到等式右邊,
;第三步:根據平方的逆運算,求出
或-3;第四步:求出
.類比上述求一元二次方程根的方法,(1)解一元二次方程:
;
(2)求代數式的最小值;
科目:初中數學 來源: 題型:
【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數量關系,并說明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:BOA是一條公路,河流OP恰好經過橋O平分∠AOB.
(1)如果要從P處移動到公路上路徑最短,除圖中所示PM外,還可以選擇PN,求作這條路徑,兩條路徑的關系是______,理由是___________.
(2)河流下游處有一點Q,如果要從P點出發,到達公路OA上的點C后再前往點Q,請你畫出一條最短路徑,表明點C的位置.
(3)D點在公路OB上,O點到D點的距離與C點相等,作出△CDP,求證:△CDP為等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請根據圖中信息回答下列問題:
(1)一個暖瓶與一個水杯分別是多少元?
(2)甲、乙兩家商場同時出售同樣的暖瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規定:這兩種商品都打九折;乙商場規定:買一個暖瓶贈送一個水杯.若某人想要買4個暖瓶和15個水杯,請問選擇哪家商場購買更合算,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】課題學習:設計概率模擬實驗. 在學習概率時,老師說:“擲一枚質地均勻的硬幣,大量重復實驗后,正面朝上的概率約是 .”小海、小東、小英分別設計了下列三個模擬實驗:
小海找來一個啤酒瓶蓋(如圖1)進行大量重復拋擲,然后計算瓶蓋口朝上的次數與總次數的比值;
小東用硬紙片做了一個圓形轉盤,轉盤上分成8個大小一樣的扇形區域,并依次標上1至8個數字(如圖2),轉動轉盤10次,然后計算指針落在奇數區域的次數與總次數的比值;
小英在一個不透明的盒子里放了四枚除顏色外都相同的圍棋子(如圖3),其中有三枚是白子,一枚是黑子,從中隨機同時摸出兩枚棋子,并大量重復上述實驗,然后計算摸出的兩枚棋子顏色不同的次數與總次數的比值.
根據以上材料回答問題:
小海、小東、小英三人中,哪一位同學的實驗設計比較合理,并簡要說出其他兩位同學實驗的不足之處.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法中,正確的是( )
A. 平面內,沒有公共點的兩條線段平行
B. 平面內,沒有公共點的兩條射線平行
C. 沒有公共點的兩條直線互相平行
D. 互相平行的兩條直線沒有公共點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【問題情境】
已知矩形的面積為a(a為常數,a>0),當該矩形的長為多少時,它的周長
最?最小值是多少?
【數學模型】
設該矩形的長為x,周長為y,則y與x的函數表達式為y=2(x+ )(x>0).
【探索研究】
小彬借鑒以前研究函數的經驗,先探索函數y=x+ 的圖象性質.
(1)結合問題情境,函數y=x+ 的自變量x的取值范圍是x>0,如表是y與x的幾組對應值.
x | … | 1 | 2 | 3 | m | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
①寫出m的值;
②畫出該函數圖象,結合圖象,得出當x=時,y有最小值,y最小=;
(2)【解決問題】
直接寫出“問題情境”中問題的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD、AE分別是△ABC的高和角平分線,∠B=30°,∠C=70°,分別求:
(1)∠BAC的度數;
(2)∠AED的度數;
(3)∠EAD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設平面內一點到等邊三角形中心的距離為d,等邊三角形的內切圓半徑為r,外接圓半徑為R.對于一個點與等邊三角形,給出如下定義:滿足r≤d≤R的點叫做等邊三角形的中心關聯點. 在平面直角坐標系xOy中,等邊△ABC的三個頂點的坐標分別為A(0,2),B(﹣ ,﹣1),C(
,﹣1).
(1)已知點D(2,2),E( ,1),F(﹣
,﹣1).在D,E,F中,是等邊△ABC的中心關聯點的是;
(2)如圖1,過點A作直線交x軸正半軸于M,使∠AMO=30°. ①若線段AM上存在等邊△ABC的中心關聯點P(m,n),求m的取值范圍;
②將直線AM向下平移得到直線y=kx+b,當b滿足什么條件時,直線y=kx+b上總存在等邊△ABC的中心關聯點;(直接寫出答案,不需過程)
(3)如圖2,點Q為直線y=﹣1上一動點,⊙Q的半徑為 .當Q從點(﹣4,﹣1)出發,以每秒1個單位的速度向右移動,運動時間為t秒.是否存在某一時刻t,使得⊙Q上所有點都是等邊△ABC的中心關聯點?如果存在,請直接寫出所有符合題意的t的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com