試題分析:(1)由AB是⊙O的直徑得到∠ADB=90°,則有∠B+∠BAD=90°,由AC為⊙O的切線得∠BAD+∠DAE=90°,則∠B=∠CAD,由于∠B=∠ODB,∠ODB=∠CDE,所以∠B=∠CDE,則∠CAD=∠CDE,加上∠ECD=∠DCA,則可得到△CDE∽△CAD;
(2)在Rt△AOC中,OA=1,AC=2

,由勾股定理可得OC=3,則CD=OC﹣OD=2,由△CDE∽△CAD,根據相似比可計算出CE的長,從而可得AE的長
試題解析:(1)∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠B+∠BAD=90°,
∵AC為⊙O的切線,
∴BA⊥AC,
∴∠BAC=90°,即∠BAD+∠DAE=90°,
∴∠B=∠CAD,
∵OB=OD,
∴∠B=∠ODB,
而∠ODB=∠CDE,
∴∠B=∠CDE,
∴∠CAD=∠CDE,
而∠ECD=∠DCA,
∴△CDE∽△CAD;
(2)∵AB=2,
∴OA=1,
在Rt△AOC中,AC=2

,
∴OC=

=3,
∴CD=OC﹣OD=3﹣1=2,
∵△CDE∽△CAD,
∴

=

,即

=

,
∴CE=

.
∴AE=AC-CE=

