精英家教網 > 初中數學 > 題目詳情
已知,在△ABC中,AB=AC.過A點的直線a從與邊AC重合的位置開始繞點A按順時針方向旋轉角θ,直線a交BC邊于點P(點P不與點B、點C重合),△BMN的邊MN始終在直線a上(點M在點N的上方),且BM=BN,連接CN.
(1)當∠BAC=∠MBN=90°時,
①如圖a,當θ=45°時,∠ANC的度數為  
②如圖b,當θ≠45°時,①中的結論是否發生變化?說明理由;
(2)如圖c,當∠BAC=∠MBN≠90°時,請直接寫出∠ANC與∠BAC之間的數量關系,不必證明.
 
(1)①45°      ②當θ≠45°時,①中的結論不發生變化
(2)∠ANC==90°﹣∠BAC
解:(1)①∵∠BAC=90°,θ=45°,
∴AP⊥BC,BP=CP(等腰三角形三線合一),
∴AP=BP(直角三角形斜邊上的中線等于斜邊的一半),
又∵∠MBN=90°,BM=BN,
∴AP=PN(等腰三角形三線合一),
∴AP=PN=BP=PC,且AN⊥BC,
∴四邊形ABNC是正方形,
∴∠ANC=45°;
 
②連接CN,當θ≠45°時,①中的結論不發生變化.
理由如下:∵∠BAC=∠MBN=90°,AB=AC,BM=BN,
∴∠ABC=∠ACB=∠BNP=45°,
又∵∠BPN=∠APC,
∴△BNP∽△ACP,
=
又∵∠APB=∠CPN,
∴△ABP∽△CNP,
∴∠ANC=∠ABC=45°;
(2)∠ANC=90°﹣∠BAC.
理由如下:∵∠BAC=∠MBN≠90°,AB=AC,BM=BN,
∴∠ABC=∠ACB=∠BNP=(180°﹣∠BAC),
又∵∠BPN=∠APC,
∴△BNP∽△ACP,
=
又∵∠APB=∠CPN,
∴△ABP∽△CNP,
∴∠ANC=∠ABC,
在△ABC中,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC.
(1)①證明四邊形ABNC是正方形,根據正方形的對角線平分一組對角線即可求解;
②根據等腰直角三角形的性質可得∠BNP=∠ACB,然后證明△BNP和△ACP相似,根據相似三角形對應邊成比例可得=,再根據兩邊對應成比例夾角相等可得△ABP和△CNP相似,然后根據相似三角形對應角相等可得∠ANC=∠ABC,從而得解;
(2)根據等腰三角形的兩底角相等求出∠BNP=∠ACB,然后證明△BNP和△ACP相似,根據相似三角形對應邊成比例可得=,再根據兩邊對應成比例夾角相等可得△ABP和△CNP相似,然后根據相似三角形對應角相等可得∠ANC=∠ABC,然后根據三角形的內角和定理列式整理即可得解.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

為了加強視力保護意識,小明想在長為4.3米,寬為3.2米的書房里掛一張測試距離為5米的視力表.在一次課題學習課上,小明向全班同學征集“解決空間過小,如何放置視力表問題”的方案,其中甲、乙、丙三位同學設計的方案新穎,構思巧妙.
(1)甲生的方案:如圖1,將視力表掛在墻ABEF和墻ADGF的夾角處,被測試人站立在對角線AC上,問:甲生的設計方案是否可行?請說明理由.
(2)乙生的方案:如圖2,將視力表掛在墻CDGH上,在墻ABEF上掛一面足夠大的平面鏡,根據平面鏡成像原理課計算得到:測試線應畫在距離墻ABEF      米處.
(3)丙生的方案:如圖3,根據測試距離為5m的大視力表制作一個測試距離為3m的小視力表.圖中的△ADF∽△ABC,如果大視力表中“E”的長是多少cm?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,⊙O中,ABDC是圓內接四邊形,∠BOC=110°,則∠BDC的度數是[ 。
   
A.110°B.70°C.55°D.125°

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知平行四邊形ABCD與平行四邊形A′B′C′D′相似,AB=3,對應邊A′B′=4,若平行四邊形ABCD的面積為18,則平行四邊形A′B′C′D′的面積為( 。
A.
27
2
B.
81
8
C.24D.32

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

一張報紙對折后的半張板紙與整張板紙相似,則整張報紙的長和寬之比為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

為解決停車難得問題,在如圖一段長56米的路段開辟停車位,每個車位是長5米、寬2.2米的矩形,矩形的邊與路的邊緣成45°角,那么這個路段最多可以劃出    個這樣的停車位(

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

一個正多邊形的一個外角等于30°,則這個正多邊形的邊數為                .

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,△ABD≌△CBD,若∠A=80°,∠ABC=70°,則∠ADC的度數為      

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,△ABC的頂點是正方形網格的格點,則sinA的值為 (     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视