精英家教網 > 初中數學 > 題目詳情
企業的污水處理有兩種方式,一種是輸送到污水廠進行集中處理,另一種是通過企業的自身設備進行處理.某企業去年每月的污水量均為12000噸,由于污水廠處于調試階段,污水處理能力有限,該企業投資自建設備處理污水,兩種處理方式同時進行.1至6月,該企業向污水廠輸送的污水量y1(噸)與月份x(1≤x≤6,且x取整數)之間滿足的函數關系如下表:
月份x(月)123456
輸送的污水量y1(噸)1200060004000300024002000
7至12月,該企業自身處理的污水量y2(噸)與月份x(7≤x≤12,且x取整數)之間滿足二次函數關系式為y2=ax2+c(a≠0).其圖象如圖所示.1至6月,污水廠處理每噸污水的費用:z1(元)與月份x之間滿足函數關系式:z1=
1
2
x
,該企業自身處理每噸污水的費用:z2(元)與月份x之間滿足函數關系式:z2=
3
4
x-
1
12
x2
;7至12月,污水廠處理每噸污水的費用均為2元,該企業自身處理每噸污水的費用均為1.5元.
(1)請觀察題中的表格和圖象,用所學過的一次函數、反比例函數或二次函數的有關知識,分別直接寫出y1,y2與x之間的函數關系式;
(2)請你求出該企業去年哪個月用于污水處理的費用W(元)最多,并求出這個最多費用;
(3)今年以來,由于自建污水處理設備的全面運行,該企業決定擴大產能并將所有污水全部自身處理,估計擴大產能后今年每月的污水量都將在去年每月的基礎上增加a%,同時每噸污水處理的費用將在去年12月份的基礎上增加(a-30)%,為鼓勵節能降耗,減輕企業負擔,財政對企業處理污水的費用進行50%的補助.若該企業每月的污水處理費用為18000元,請計算出a的整數值.
(參考數據:
231
≈15.2,
419
≈20.5,
809
≈28.4)
(1)根據表格中數據可以得出xy=定值,則y1與x之間的函數關系為反比例函數關系:
y1=
k
x
,將(1,12000)代入得:
k=1×12000=12000,
故y1=
12000
x
(1≤x≤6,且x取整數);
根據圖象可以得出:圖象過(7,10049),(12,10144)點,
代入y2=ax2+c(a≠0)得:
10049=49a+c
10144=144a+c
,
解得:
a=1
c=10000
,
故y2=x2+10000(7≤x≤12,且x取整數);

(2)當1≤x≤6,且x取整數時:
W=y1•z1+(12000-y1)•z2=
12000
x
1
2
x+(12000-
12000
x
)•(
3
4
x-
1
12
x2),
=-1000x2+10000x-3000,
∵a=-1000<0,x=-
b
2a
=5,1≤x≤6,
∴當x=5時,W最大=22000(元),
當7≤x≤12時,且x取整數時,
W=2×(12000-y2)+1.5y2=2×(12000-x2-10000)+1.5(x2+10000),
=-
1
2
x2+19000,
∵a=-
1
2
<0,x=-
b
2a
=0,
當7≤x≤12時,W隨x的增大而減小,
∴當x=7時,W最大=18975.5(元),
∵22000>18975.5,
∴去年5月用于污水處理的費用最多,最多費用是22000元;

(3)由題意得:12000(1+a%)×1.5×[1+(a-30)%]×(1-50%)=18000,
設t=a%,整理得:10t2+17t-13=0,
解得:t=
-17±
809
20

809
≈28.4,
∴t1≈0.57,t2≈-2.27(舍去),
∴a≈57,
答:a的值是57.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c與x軸相交于A、B,點B的坐標為(10,0),頂點M的坐標為(4,8),點P從點M出發,以每秒1個單位的速度沿線段MA向A點運動;點Q從點A出發,以每秒2個單位的速度沿AB向B點運動,若P、Q同時出發,當其中的一點到達終點時,另一點也隨之停止運動,設運動時間為t秒鐘.
(1)求拋物線的解析式;
(2)設△APQ的面積為S,求S與t之間的函數關系式,△APQ的面積是否有最大值?若有,請求出其最大值;若沒有,請說明理由;
(3)當t為何值時,△APQ為等腰三角形?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

二次函數y=x2+bx+c的圖象與y軸的負半軸相交于點C(0,-3)與x軸正半軸相交于點B,且OB=OC.
①求B點坐標;
②求函數的解析式及最小值;
③寫出y隨x的增大而減小的自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B(3,0)兩點,直線l與拋物線交于A、C兩點,其中C點的橫坐標為2.
(1)求拋物線的解析式及直線AC的解析式;
(2)P是線段AC上的一個動點,過P點作x軸的垂線交拋物線于E點,求線段PE長度的最大值;
(3)點G是拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=mx2-(m-5)x-5(m>0)與x軸交于兩點,A(x1,0),B(x2,0)(x1<x2),與y軸交于點C,且AB=6.
(1)求拋物線與直線BC的解析式;
(2)在所給出的直角坐標系中作出拋物線的圖象.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖.用長為18cm的籬笆(虛線部分),兩面靠墻圍成矩形的苗圃,設矩形的一邊長為x(m),面y(m2),當x=______時,所圍苗圃面積最大.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,是某河床橫斷面的示意圖.據該河段的水文資料顯示,當水面寬為40米時,河水最深為2米.
(1)請在恰當的平面直角坐標系中求出與該拋物線型河床橫斷面對應的函數關系式;
(2)當水面寬度為36米時,一艘吃水深度(船底部到水面的距離)為1.8米的貨船能否在這個河段安全通過?為什么?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知直角梯形紙片OABC在平面直角坐標系中的位置如圖①所示,四個頂點的坐標分別為O(0,0),A(10,0),B(8,2
3
),C(0,2
3
),點P在線段OA上(不與O、A重合),將紙片折疊,使點A落在射線AB上(記為點A’),折痕PQ與射線AB交于點Q,設OP=x,折疊后紙片重疊部分的面積為y.(圖②供探索用)
(1)求∠OAB的度數;
(2)求y與x的函數關系式,并寫出對應的x的取值范圍;
(3)y存在最大值嗎?若存在,求出這個最大值,并求此時x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,點D在BC上,DEAC,交AB與點E,點F在AC上,DC=DF,若BC=3,EB=4,CD=x,CF=y,求y與x的函數關系式,并寫出自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视