【題目】關于函數y=﹣2x+1,下列結論正確的是( 。
A. 圖象必經過點(﹣2,1) B. 圖象經過第一、二、三象限
C. 當x>時,y<0 D. y隨x的增大而增大
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的頂點都在菱形的邊上.設AE=AH=x(0<x<1),矩形的面積為S.
(1)求S關于x的函數解析式;
(2)當EFGH是正方形時,求S的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究:小明在求同一坐標軸上兩點間的距離時發現,對于平面直角坐標系內任意兩點P1x1,y1,P2x2,y2,可通過構造直角三角形利用圖1得到結論:,他還利用圖2證明了線段P1P2的中點Px,y的坐標公式:
(1)已知點M2,1,N2,5,則線段MN長度為 ;
(2)請求出以點A2,2,B2,0,C3,1,D為頂點的平行四邊形頂點D的坐標;
(3)如圖3,OL滿足y2xx0,點P2,1是OL與x軸正半軸所夾的內部一點,請在OL、x軸上分別找出點E、F,使PEF的周長最小,求出周長的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了發展鄉村旅游,建設美麗從化,某中學七年級一班同學都積極參加了植樹活動,今年四月份該班同學的植樹情況部分如圖所示,且植樹2株的人數占32%.
(1)求該班的總人數、植樹株數的眾數,并把條形統計圖補充完整;
(2)若將該班同學的植樹人數所占比例繪制成扇形統計圖時,求“植樹3株”對應扇形的圓心角的度數;
(3)求從該班參加植樹的學生中任意抽取一名,其植樹株數超過該班植樹株數的平均數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是直角三角形,∠ACB=90°.
(1)尺規作圖:作⊙C,使它與AB相切于點D,與AC相交于點E,保留作圖痕跡,不寫作法,請標明字母.
(2)在你按(1)中要求所作的圖中,若BC=3,∠A=30°,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(7分)如圖,平行四邊形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連接CE,DF.
(1)求證:四邊形CEDF是平行四邊形;
(2)①當AE= cm時,四邊形CEDF是矩形;
②當AE= cm時,四邊形CEDF是菱形;(直接寫出答案,不需要說明理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐
問題情境:在數學活動課上,我們給出如下定義:順次連按任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖(1),在四邊形ABCD中,點E,F,G,H分別為邊AB,BC,CD,DA的中點.試說明中點四邊形EFGH是平行四邊形.
探究展示:勤奮小組的解題思路:
反思交流:
(1)①上述解題思路中的“依據1”、“依據2”分別是什么?
依據1: ;依據2: ;
②連接AC,若AC=BD時,則中點四邊形EFGH的形狀為 ;
創新小組受到勤奮小組的啟發,繼續探究:
(2)如圖(2),點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F,G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并說明理由;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其它條件不變,則中點四邊形EFGH的形狀為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).
(1)把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點A1按逆時針方向旋轉90°,在網格中畫出旋轉后的△A1B2C2;
(3)如果網格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數軸上兩點間的距離等于這兩個點所對應的數的差的絕對值.例:點A、B在數軸上對應的數分別為a、b,則A、B兩點間的距離表示為AB=|a﹣b|.根據以上知識解題:
(1)點A在數軸上表示3,點B在數軸上表示2,那么AB=_______.
(2)在數軸上表示數a的點與﹣2的距離是3,那么a=______.
(3)如果數軸上表示數a的點位于﹣4和2之間,那么|a+4|+|a﹣2|=______.
(4)對于任何有理數x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接寫出最小值.如果沒有.請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com