精英家教網 > 初中數學 > 題目詳情
如圖,CD與BE互相垂直平分,AD⊥DB,∠BDE=70°,則∠CAD=        °.
70。
∵CD與BE互相垂直平分,∴四邊形BDEC是菱形。∴DB=DE。
∵∠BDE=70°,∴∠ABD==55°。
∵AD⊥DB,∴∠BAD=90°﹣55°=35°。
根據軸對稱性,四邊形ACBD關于直線AB成軸對稱,
∴∠BAC=∠BAD=35°。∴∠CAD=∠BAC+∠BAD=35°+35°=70°。
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,四邊形ABCD中,∠A ="∠C=" 90°,BE平分∠ABC,DF平分∠ADC,則BE與DF有何位置關系?試說明理由。(10分)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,在菱形ABCD中,F為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠2.
(1)若CE=1,求BC的長;
(2)求證:AM=DF+ME.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,已知正方形ABCD的邊長為1,以頂點A、B為圓心,1為半徑的兩弧交于點E,以頂點C、D為圓心,1為半徑的兩弧交于點F,則EF的長為   ▲  

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

ABCD中,已知點A(﹣1,0),B(2,0),D(0,1).則點C的坐標為      

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,在梯形ABCD中,AD∥BC,AD=6厘米,BC=18厘米,E是BC的中點.點P以每秒1厘米的速度從點A出發,沿AD向點D運動;點Q同時以每秒2厘米的速度從點C出發,沿CB向點B運動.點P停止運動時,點Q也隨之停止運動.當運動時間t=    ▲     秒時,以點P、E、Q、D為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知正方形邊長為4,分別是上的兩個動點,當點在上運動時,保持垂直,設,梯形的面積為,下列結論



的函數關系式為:
④當點運動到的中點時,
其中正確的有    。
 ①②③          ①③④          ②③④         ②④

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖①在梯形ABCD中,AD∥BC。AB=DC
(1)如果點P,E和F分別是BC,AC和BD的中點,證明:AB=PE+PF
(2)如果點P是線段BC上任意一點(中點除外),PE∥AB,PF∥DC,如圖②所示,那么AB=PE+PF這個結論還成立嗎?請說明理由
(3)如果點P在線段BC的延長線上, PE∥AB,PF∥DC,其他條件不變,那么結論AB=PE+PF是否成立?直接寫出結論,不必證明。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖.在△ABC中.D是AB的中點.E是CD的中點.過點C作CF∥AB交AE的延長線于點F.連結BF。
(1)求證:DB=CF;
(2)在△ABC中添加一個條件:      ,使四邊形BDCF為     (填:矩形或菱形)。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视