【題目】如圖1,長方形OABC的邊OA、OC分別在x軸、y軸上,B點坐標是(8,4),將△AOC沿對角線AC翻折得△ADC,AD與BC相交于點E.
(1)求證:△CDE≌△ABE
(2)求E點坐標;
(3)如圖2,動點P從點A出發,沿著折線A→B→C→O運動(到點O停止),是否存在點P,使得△POA的面積等于△ACE的面積,若存在,直接寫出點P坐標,若不存在,說明理由.
【答案】(1)見解析;(2)E(5,4);(3)存在,滿足條件的點P的坐標為(8,)或(0,
),理由見解析
【解析】
(1)用角角邊定理即可證明.
(2)設CE=AE=n,則BE=8-n,利用勾股定理即可求解.
(3)構建方程確定點P的縱坐標即可解決問題.
解:(1)證明:∵四邊形OABC為矩形,
∴AB=OC,∠B=∠AOC=90°,
∴CD=OC=AB,∠D=∠AOC=∠B,
又∠CED=∠ABE,
∴△CDE≌△ABE(AAS),
∴CE=AE;
(2)∵B(8,4),即AB=4,BC=8.
∴設CE=AE=n,則BE=8﹣n,
可得(8﹣n)2+42=n2,
解得:n=5,
∴E(5,4);
(3)∵S△ACE=CEAB=
×5×4=10,
∴S△POA=OAyP=10,
∴×8×yP=10,
∴yP=,
∴滿足條件的點P的坐標為(8,)或(0,
).
科目:初中數學 來源: 題型:
【題目】如圖1,已知為正方形
的中心,分別延長
到點
,
到點
,使
,
,連結
,將△
繞點
逆時針旋轉
角得到△
(如圖2).連結
、
.
(Ⅰ)探究與
的數量關系,并給予證明;
(Ⅱ)當,
時,求:
①的度數;
②的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1)AC⊥AB,BD⊥AB,AB=12cm,AC=BD=8cm,點P在線段AB上以2cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動,它們運動的時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當t=2時,△ACP與△BPQ是否全等,請說明理由;
(2)在(1)的條件下,判斷此時線段PC和線段PQ的位置關系,并證明;
(3)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=50°”,其他條件不變.設點Q的運動速度為xcm/s,是否存在實數x,使得△ACP與△BPQ全等?若存在,求出相應的x、t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點 E.
(1)求證:DE=CE.
(2)若∠CDE=35°,求∠A 的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC經過一定的運動得到△A1B1C1,然后以點A1為位似中心將△A1B1C1放大為原來的2倍得到△A1B2C2,如果△ABC上的點P的坐標為(a,b),那么這個點在△A1B2C2中的對應點P2的坐標為 ( )
A. (a+3,b+2) B. (a+2,b+3)
C. (2a+6,2b+4) D. (2a+4,2b+6)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,每個小正方形的邊長為1,△ABC的頂點均在格點上,點A、B、C的坐標分別是A(﹣8,4)、B(﹣7,7)、C(﹣2,2).
(1)在這個坐標系內畫出△A1B1C1,使△A1B1C1與△ABC關于x軸對稱;
(2)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=﹣1,點B的坐標為(1,0),則下列結論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結論有( 。﹤.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知和
都是等腰直角三角形,
,點
是
的中點,連接
,
.
(1)當點,
分別在
和
上時,如圖1,試猜想線段
和
的數量關系,請直接寫出你得到的結論(不要求證明);
(2)將繞點
逆時針方向旋轉一定角度后(旋轉角度大于
,小于或等于
),如圖2,請問:(1)中的結論是否仍然成立?如果成立,請給予證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】臺州某校七(1)班同學分三組進行數學活動,對七年級400名同學最喜歡喝的飲料情況、八年級300名同學零花錢的最主要用途情況、九年級300名同學完成家庭作業時間情況進行了全面調查,并分別用扇形圖、頻數分布直方圖、表格來描述整理得到的數據.
根據以上信息,請回答下列問題:
(1)七年級400名同學中最喜歡喝“冰紅茶”的人數是多少?
(2)補全八年級300名同學中零花錢的最主要用途情況頻數分布直方圖;
(3)九年級300名同學中完成家庭作業的平均時間大約是多少小時(結果保留一位小數)?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com