精英家教網 > 初中數學 > 題目詳情

【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,FBD上,BE=DF.

(1)求證:AE=CF;

(2)若AB=6,∠COD=60°,求矩形ABCD的面積.

【答案】

【解析】試題分析:(1)由矩形的性質得出OA=OC,OB=OD,AC=BD,∠ABC=90°,證出OE=OF,由SAS證明△AOE≌△COF,即可得出AE=CF;

2)證出△AOB是等邊三角形,得出OA=AB=6AC=2OA=12,在Rt△ABC中,由勾股定理求出BC的長,即可得出矩形ABCD的面積.

試題解析:(1)證明:四邊形ABCD是矩形,∴OA=OC,OB=ODAC=BD,∠ABC=90°∵BE=DF,∴OE=OF,在△AOE△COF中,∵OA=OC,∠AOE=∠COF,OE=OF∴△AOE≌△COFSAS),∴AE=CF;

2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°∴△AOB是等邊三角形,∴OA=AB=6,∴AC=2OA=12,在Rt△ABC中,BC==矩形ABCD的面積=ABBC=6×=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的圓O與AD、AC分別交于點E、F,且∠ACB=∠DCE.

(1)判斷直線CE與⊙O的位置關系,并證明你的結論;
(2)若tan∠ACB= ,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解不等式組:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知正方形ABCD的邊長為3,E是BC上一點,BE= ,Q是CD上一動點,將△CEQ沿直線EQ折疊后,點C落在點P處,連接PA,點Q從點C出發,沿線段CD向點D運動,當PA的長度最小時,CQ的長為(
A.3 ﹣3
B.3﹣
C.
D.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的對角線相交于點OE,F,G,H分別是AO,BO,CO,DO的中點請問四邊形EFGH是矩形嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC和△ECD都是等邊三角形,B、C、D在一條直線上。

求證:(1)BE=AD;

(2) △FCH是等邊三角形

(3)求∠EMD的度數。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,已知A(0,a)B(b, 0),且ab滿足: ,點Dx正半軸上一動點

(1)A、B兩點的坐標

(2)如圖,∠ADO的平分線交y軸于點C,點 F為線段OD上一動點,過點FCD的平行線交y軸于點H,且∠AFH=45°, 判斷線段AHFD、AD三者的數量關系,并予以證明

(3)AO為腰,A為頂角頂點作等腰△ADO,若∠DBA=30°,直接寫出∠DAO的度數

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線ABCD交于點OCOE=90°,OC平分∠AOFCOF=35°.

(1)求∠BOD的度數;

(2)OE平分∠BOF嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個盒子里有完全相同的三個小球,球上分別標上數字-1、1、2.隨機摸出一個小球(不放回)其數字記為p,再隨機摸出另一個小球其數字記為q,則滿足關于x的方程x2+px+q=0有實數根的概率是( 。.
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视