【題目】如圖,把一副三角板如圖①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6cm,DC=7cm.把三角板DCE繞點C順時針旋轉15°得到△D1CE1(如圖②).
(1)求∠OFE1的度數;
(2)求線段AD1的長.
【答案】(1)120°;(2)5.
【解析】
(1)利用已知得出∠BCO=45°,進而根據三角形內角和定理求出∠BOC的度數;
(2)根據OFE1=∠B+∠1,易得∠OFE1的度數,進而得出∠4=90°,在Rt△AD1O中根據勾股定理就可以求得AD1的長.
(1)如圖乙所示,
∠BCO=60°-15°=45°,
∠BOC=180°-45°-45°=90°;
(2)如圖乙所示,
∵∠3=15°,∠E1=90°,
∴∠1=∠2=75°,
又∵∠B=45°,
∴∠OFE1=∠B+∠1=45°+75°=120°;
∴∠D1FO=60°,
∵∠CD1E1=30°,
∴∠4=90°,
又∵AC=BC,∠A=45°
即△ABC是等腰直角三角形.
∴OA=OB=AB=3cm,
∵∠ACB=90°,
∴CO=AB=
×6=3(cm),
又∵CD1=7(cm),
∴OD1=CD1-OC=7-3=4(cm),
在Rt△AD1O中,AD1=(cm)
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A,點B的坐標分別為(0,2),(-1,0),將△ABO繞點O順時針旋轉,若點A的對應點A′的坐標為(2,0),
(1)則點B的對應點B′的坐標為_____;
(2)畫出旋轉后的圖形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正確結論的是_________(只填序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統計圖,請回答下列問題:
(1)這次被調查的學生共有 人;
(2)請你將條形統計圖(2)補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現優秀,現決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,AC=2cm.現在將△ABC繞點C逆時針旋轉至△A′B′C′,使得點A′恰好落在AB上,連接BB′,則BB′的長度為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數y=(m﹣2)xm2+m-4 +2x﹣1是一個二次函數,求該二次函數的解析式.
【答案】y=﹣5x2+2x﹣1
【解析】試題分析:根據二次函數的定義得到m2+m﹣4=2且m﹣2≠0,由此求得m的值,進而得到該二次函數的解析式.
試題解析:依題意得:m2+m﹣4=2且m﹣2≠0. 即(m﹣2)(m+3)=0且m﹣2≠0,
解得m=﹣3,
則該二次函數的解析式為y=﹣5x2+2x﹣1
【題型】解答題
【結束】
21
【題目】如圖,在ABCD中,EF∥AB,FG∥ED,DE:DA=2:5,EF=4,求線段CG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在課堂上,老師將除顏色外都相同的1個黑球和若干個白球放入一個不透明的口袋并攪勻,讓全班同學依次進行摸球試驗,每次隨機摸出一個球,記下顏色再放回攪勻,下表是試驗得到的一組數據.
摸球的次數n | 100 | 150 | 200 | 500 | 800 |
摸到黑球的次數m | 26 | 37 | 49 | 124 | 200 |
摸到黑球的頻率 | a |
表中a的值等于______;
估算口袋中白球的個數;
用畫樹狀圖或列表的方法計算連續兩名同學都摸出白球的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+bx+c(a,b,c為常數)的對稱軸為x=1,與y軸的交點為c(0,4),y的最大值為5,頂點為M,過點D(0,1)且平行于x軸的直線與拋物線交于點A,B.
(Ⅰ)求該二次函數的解析式和點A、B的坐標;
(Ⅱ)點P是直線AC上的動點,若點P,點C,點M所構成的三角形與△BCD相似,求出所有點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com