【題目】甲、乙兩家文化用品商場平時以同樣價格出售相同的商品.六一期間兩家商場都讓利酬賓,其中甲商場所有商品一律按8折出售,乙商場對一次購物中超過200元后的價格部分打7折.
(1)分別寫出兩家商場購物金額(元)與商品原價
(元)的函數解析式;
(2)在如圖所示的直角坐標系中畫出(1)中函數的圖象;
(3)六一期間如何選擇這兩家商場購物更省錢?
【答案】(1)甲商場:y=0.8x,乙商場:y=x(0≤x≤200),y=0.7x+60(x>200);(2)詳見解析;(3)詳見解析.
【解析】
(1)根據題中描述的數量關系分別寫出甲商場和乙商場中,y與x的函數關系即可(其中乙商場需分0≤x≤200和x>200兩段分別討論);(2)根據(1)中所得函數關系式按要求畫出函數圖象即可;(3)根據(1)中所得函數關系式分0.8x<0.7x+60、0.8x=0.7x+60、0.8x>0.7x+60三種情況進行解答即可得到相應的結論.
解:(1)甲商場:y=0.8x,
乙商場:y=x(0≤x≤200),
y=0.7(x﹣200)+200=0.7x+60,
即y=0.7x+60(x>200);
(2)如圖所示;
(3)①由0.8x<0.7x+60解得:x<600;
②由0.8x=0.7x+60解得:x=600;
③由0.8x>0.7x+60解得x>600,
∴當x=600時,甲、乙商場購物花錢相等;當x<600時,在甲商場購物更省錢;當x>600時,在乙商場購物更省錢.
科目:初中數學 來源: 題型:
【題目】小明和爸爸從家步行去公園,爸爸先出發一直勻速前行,小明后出發.家到公園的距離為2500 m,如圖是小明和爸爸所走的路程s(m)與步行時間t(min)的函數圖象.
(1)直接寫出小明所走路程s與時間t的函數關系式;
(2)小明出發多少時間與爸爸第三次相遇?
(3)在速度都不變的情況下,小明希望比爸爸早20 min到達公園,則小明在步行過程中停留的時間需作怎樣的調整?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的直徑AB的長為2,點C在圓周上,∠CAB=30°.點D是圓上一動點,DE∥AB交CA的延長線于點E,連接CD,交AB于點F.
(1)如圖1,當DE與⊙O相切時,求∠CFB的度數;
(2)如圖2,當點F是CD的中點時,求△CDE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為進一步發展基礎教育,自2014年以來,某縣加大了教育經費的投入,2014年該縣投入教育經費6000萬元。2016年投入教育經費8640萬元。假設該縣這兩年投入教育經費的年平均增長率相同。
(1)求這兩年該縣投入教育經費的年平均增長率;
(2)若該縣教育經費的投入還將保持相同的年平均增長率,請你預算2017年該縣投入教育經費多少萬元。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了調查甲,乙兩臺包裝機分裝標準質量為奶粉的情況,質檢員進行了抽樣調查,過程如下.請補全表一、表二中的空,并回答提出的問題.
收集數據:
從甲、乙包裝機分裝的奶粉中各自隨機抽取10袋,測得實際質量(單位:)如下:
甲:394,400,408,406,410,409,400,400,393,395
乙:402,404,396,403,402,405,397,399,402,398
整理數據:
表一
頻數種類 質量( | 甲 | 乙 |
____________ | 0 | |
0 | 3 | |
3 | 1 | |
0 | ____________ | |
____________ | 1 | |
3 | 0 |
分析數據:
表二
種類 | 甲 | 乙 |
平均數 | 401.5 | 400.8 |
中位數 | ____________ | 402 |
眾數 | 400 | ____________ |
方差 | 36.85 | 8.56 |
得出結論:
包裝機分裝情況比較好的是______(填甲或乙),說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一家圖文廣告公司制作的宣傳畫板頗受商家歡迎,這種畫板的厚度忽略不計,形狀均為正方形,邊長在10~30dm之間.每張畫板的成本價(單位:元)與它的面積(單位:dm2)成正比例,每張畫板的出售價(單位:元)由基礎價和浮動價兩部分組成,其中基礎價與畫板的大小無關,是固定不變的.浮動價與畫板的邊長成正比例.在營銷過程中得到了表格中的數據.
畫板的邊長(dm) | 10 | 20 |
出售價(元/張) | 160 | 220 |
(1)求一張畫板的出售價與邊長之間滿足的函數關系式;
(2)已知出售一張邊長為30dm的畫板,獲得的利潤為130元(利潤=出售價-成本價),
①求一張畫板的利潤與邊長之間滿足的函數關系式;
②當邊長為多少時,出售一張畫板所獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系xOy中,矩形OABC的邊長OA、OC分別為12cm、6cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經過點A、B,且18a+c=0.
(1)求拋物線的解析式.
(2)如果點P由點A開始沿AB邊以1cm/s的速度向終點B移動,同時點Q由點B開始沿BC邊以2cm/s的速度向終點C移動.
①移動開始后第t秒時,設△PBQ的面積為S,試寫出S與t之間的函數關系式,并寫出t的取值范圍.
②當S取得最大值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖:點(1,3)在函數y=(x>0)的圖象上,矩形ABCD的邊BC在x軸上,E是對角線BD的中點,函數y=
(x>0)的圖象又經過A、E兩點,點E的橫坐標為m,解答下列問題:
(1)求k的值;
(2)求點A的坐標;(用含m代數式表示)
(3)當∠ABD=45°時,求m的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com