【題目】如圖,在△ABC中,點D,E分別在邊AB、AC上,DC與BE相交于點O,且DO=2,BO=DC=6,OE=3.
(1)求證:DE∥BC;
(2)如果四邊形BCED的面積比△ADE的面積大12,求△ABC的面積.
科目:初中數學 來源: 題型:
【題目】如圖4,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F,E分別是AB,BC的中點,則下列結論不一定正確的是( )
A.△ABC是等腰三角形B.四邊形EFAM是菱形
C.D.DE平分∠CDF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小涵和小西想要測量建筑物OP與廣告牌AB的高度.首先,小涵站在D處看到廣告牌AB的頂端A、建筑物OP的頂端O在一條直線上;然后,在陽光下,小西站在N處,此時他的影長為NE,同一時刻,測得建筑物OP的影長為PG,OP⊥PD,AB⊥PD,CD⊥PD,MN⊥PD.
(1)請你畫出表示建筑物OP在陽光下的影子PG;
(2)已知NE=1.92m,PG=24m,BD=3m,建筑物OP與廣告牌AB之間的距離PB=8.1m,小涵的眼睛到地面的距離CD=1.5m,小西的身高MN=1.6m.
①求出建筑物OP的高度;
②求出廣告牌AB的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩個一次函數l1、l2的圖象如圖:
(1)分別求出l1、l2兩條直線的函數關系式;
(2)求出兩直線與y軸圍成的△ABP的面積;
(3)觀察圖象:請直接寫出當x滿足什么條件時,l1的圖象在l2的下方.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知是一次函數
的圖象與反比例函數
的圖象的兩個交點。
(1)求此反比例函數和一次函數的解析式;
(2)連接,求
的面積;
(3)根據圖象直接寫出使不等式成立的
的取值范圍______________________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在Rt△ABC中,∠C=90°,AC=4,BC=3,O是AB上一點,且AO=2.
(1)求點O到直線AC的距離OH的長;
(2)若P是邊AC上一個動點,作PQ⊥OP交線段BC于Q(不與B、C重合),設AP=x,CQ=y,試求y關于x的函數解析式,并寫出定義域;
(3)在(2)的條件下,當AP為多少時能使△OPQ與△CPQ相似.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC頂點的坐標分別為A(1,-1),B(4,-1),C(3,-4).
(1)將△ABC繞點A逆時針旋轉90°后,得到△AB1C1.在所給的直角坐標系中畫出旋轉后的,并寫出點
的坐標:
____________;
(2)以坐標原點O為位似中心,在第二象限內再畫一個放大的,使得它與△ABC的位似比等于2:1 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉90°后,得到△CBE.
(1)求∠DCE的度數;
(2)若AB=4,CD=3AD,求DE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com