精英家教網 > 初中數學 > 題目詳情
如圖,大樓AB的高為16米,遠處有一塔CD,小明在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°.其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求:
(1)塔CD的高度;
(2)若將題目中的數據16米、60°、45°分別改為m米、∠α、∠β(α>β),請用含m、α、β的式子表示塔CD的高度.
分析:首先分析圖形,根據題意構造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關于AC的方程,從而求出DC.
解答:解:(1)作BE⊥CD于E.
可得Rt△BED和矩形ACEB.
則有CE=AB=16,AC=BE.
在Rt△BED中,∠DBE=45°,DE=BE=AC.
在Rt△DAC中,∠DAC=60°,DC=ACtan60°=
3
AC.
∵16+DE=DC,
∴16+AC=
3
AC,
解得:AC=8
3
+8=DE.
所以塔CD的高度為(8
3
+24)米;

(2)根據(1)得:Rt△BED中,DE=BE=AC•tanβ,
Rt△DAC中,CD=ACtanα,
∵AB=CD-DE=m,
∴AC•tanα-AC•tanβ=m,
解得:AC=
m
tanα-tanβ

則CD的高度是:
m•tanα
tanα-tanβ
點評:本題要求學生借助仰角關系構造直角三角形,并結合圖形利用三角函數解直角三角形.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.

查看答案和解析>>

科目:初中數學 來源:伊春 題型:解答題

如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.
精英家教網

查看答案和解析>>

科目:初中數學 來源:黑龍江省中考真題 題型:解答題

如圖,大樓AB的高為16米,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為,在樓頂B處測得塔頂D處的仰角為.其中兩點分別位于兩點正下方,且兩點在同一水平線上,求塔CD的高度.

查看答案和解析>>

科目:初中數學 來源:第1章《解直角三角形》中考題集(37):1.3 解直角三角形(解析版) 題型:解答題

如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视