【題目】如圖,一次軍事演習中,藍方在﹣條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進實施攔截.紅方行駛2000米到達C后,因前方無法通行,紅方決定調整方向,再朝南偏西45°方向前進了相同距離,剛好在D處成功攔截藍方.
(1)求點C到公路的距離;
(2)求紅藍雙方最初的距離.(結果保留根號)
【答案】
(1)
解:過B作AB的垂線,過C作AB的平行線,兩線交于點E;過C作AB的垂線,過D作AB的平行線,兩線交于點F,則∠E=∠F=90°,
點C到公路的距離就是BE的長,
在Rt△BCE中,∵BC=2000米,∠EBC=60°,
∴BE=BCcos60°=2000× =1000米.
答:點C到公路的距離就是BE的長是1000米
(2)
解:紅藍雙方相距AB=DF+CE.
在Rt△BCE中,
∵BC=2000米,∠EBC=60°,
∴CE=BCsin60°=2000× =1000
米.
在Rt△CDF中,
∵∠F=90°,CD=2000米,∠DCF=45°,
∴DF=CDsin45°=2000× =1000
米,
∴AB=DF+CE=(1000 +500
)米.
答:紅藍雙方最初相距(1000 +1000
)米
【解析】過B作AB的垂線,過C作AB的平行線,兩線交于點E;過C作AB的垂線,過D作AB的平行線,兩線交于點F,則∠E=∠F=90°;(1)點C到公路的距離就是BE的長,在Rt△BCE中,根據三角函數可求BE的長.(2)紅藍雙方相距AB=DF+CE.在Rt△BCE中,根據銳角三角函數的定義求出CE的長,同理,求出DF的長,進而可得出結論.
【考點精析】認真審題,首先需要了解關于方向角問題(指北或指南方向線與目標方向 線所成的小于90°的水平角,叫做方向角).
科目:初中數學 來源: 題型:
【題目】如圖,將邊長為6的正三角形紙片按如下順序進行兩次折疊,展開后,得折痕
(如圖①),
為其交點.
(1)探求與
的數量關系,并說明理由;
(2)如圖②,若分別為
上的動點.
①當的長度取得最小值時,求
的長度;
②如圖③,若點在線段
上,
,則
的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣x2+bx+c的圖象如圖所示,它與x軸的一個交點坐標為(﹣1,0),與y軸的交點坐標為(0,3).
(1)求出b、c的值,并寫出此二次函數的解析式;
(2)根據圖象,直接寫出函數值y為正數時,自變量x的取值范圍;
(3)當2≤x≤4時,求y的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將半徑為3cm,圓心角為60°的扇形紙片.AOB在直線l上向右作無滑動的滾動至扇形A′O′B′處,則頂點O經過的路線總長 cm(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場為了吸引顧客,設立了一個可以自由轉動的轉盤(如圖,轉盤被平均分成20份),并規定:顧客每購物滿200元,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅色、黃色、綠色區域,那么顧客就可以分別獲得50元、30元、20元的購物券,憑購物券可以在該商場繼續購物.如果顧客不愿意轉盤,那么可直接獲得10元的購物券.
(1)求轉動一次轉盤獲得購物券的概率;
(2)轉轉盤和直接獲得購物券,你認為哪種方式對顧客更合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx﹣2的圖象與x軸交于A、B兩點,與y軸交于點C,點A的坐標為(4,0),且當x=﹣2和x=5時二次函數的函數值y相等.
(1)求實數a、b的值;
(2)如圖1,動點E、F同時從A點出發,其中點E以每秒2個單位長度的速度沿AB邊向終點B運動,點F以每秒 個單位長度的速度沿射線AC方向運動.當點E停止運動時,點F隨之停止運動.設運動時間為t秒.連接EF,將△AEF沿EF翻折,使點A落在點D處,得到△DEF.
①是否存在某一時刻t,使得△DCF為直角三角形?若存在,求出t的值;若不存在,請說明理由.
②設△DEF與△ABC重疊部分的面積為S,求S關于t的函數關系式;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場為了吸引顧客,設立了一個可以自由轉動的轉盤(如圖,轉盤被平均分成20份),并規定:顧客每購物滿200元,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅色、黃色、綠色區域,那么顧客就可以分別獲得50元、30元、20元的購物券,憑購物券可以在該商場繼續購物.如果顧客不愿意轉盤,那么可直接獲得10元的購物券.
(1)求轉動一次轉盤獲得購物券的概率;
(2)轉轉盤和直接獲得購物券,你認為哪種方式對顧客更合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:
學習了無理數后,小航用這樣的方法估算的近似值:
由于,不妨設
(
),
所以,可得
.
由可知
,所以
,
解得 , 則
.
依照小航的方法解決下列問題:
(1)估算的值.
(2)已知非負整數、
、
,若
,且
,則
.(用含
、
的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2+bx+2過B(﹣2,6),C(2,2)兩點.
(1)試求拋物線的解析式;
(2)記拋物線頂點為D,求△BCD的面積;
(3)若直線y=﹣ x向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com