精英家教網 > 初中數學 > 題目詳情
已知二次函數y=x2+ax+a-2.
(1)求證:不論a為何實數,此函數圖象與x軸總有兩個交點.
(2)設a<0,當此函數圖象與x軸的兩個交點的距離為
13
時,求出此二次函數的解析式.
分析:(1)根據函數與方程的關系,求出△的值,若為正數,則此函數圖象與x軸總有兩個交點.
(2)根據二次函數圖象與x軸的兩個交點的距離公式解答即可.
解答:解:(1)∵△=a2-4(a-2)=(a-2)2+4>0,
∴不論a為何實數,此函數圖象與x軸總有兩個交點.

(2)根據兩點間距離公式:
a2-4(a-2)
|a|
=
13
,
解得a=-1或a=
2
3
(不符合題意,舍去).
所以函數解析式為:y=x2-x-3.
點評:本題考查了拋物線與x軸的交點問題,熟悉根的判別式和兩點間的距離公式是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

22、已知二次函數y=x2+mx+m-5,
(1)求證:不論m取何值時,拋物線總與x軸有兩個交點;
(2)求當m取何值時,拋物線與x軸兩交點之間的距離最短.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數y=x2+(2a+1)x+a2-1的最小值為0,則a的值是( 。
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知二次函數y=-x2+2x+m的部分圖象如圖所示,則關于x的一元二次方程-x2+2x+m=0的解為( 。
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中數學 來源: 題型:

8、已知二次函數y1=x2-x-2和一次函數y2=x+1的兩個交點分別為A(-1,0),B(3,4),當y1>y2時,自變量x的取值范圍是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數y=-x2+bx+c的圖象如圖所示,它與x軸的一個交點坐標為(-1,0),與y軸的交點坐標為(0,3).
(1)試求二次函數的解析式;
(2)求y的最大值;
(3)寫出當y>0時,x的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视