【題目】如圖,⊙O的直徑AB=12cm,C為AB延長線上一點,CP與⊙O相切于點P,過點B作弦BD∥CP,連接PD.
(1)求證:點P為的中點;
(2)若∠C=∠D,求四邊形BCPD的面積.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)連接OP,根據切線的性質得到PC⊥OP,根據平行線的性質得到BD⊥OP,根據垂徑定理即可得到結論;
(2)根據圓周角定理得到∠POB=2∠D,根據三角形的內角和得到∠C=30°,推出四邊形BCPD是平行四邊形,于是得到結論.
試題解析:(1)連接OP,
∵CP與⊙O相切于點P,
∴PC⊥OP,
∵BD∥CP,
∴BD⊥OP,
∴ ,
∴點P為 的中點;
(2)∵∠C=∠D,
∵∠POB=2∠D,
∴∠POB=2∠C,
∵∠CPO=90°,
∴∠C=30°,
∵BD∥CP,
∴∠C=∠DBA,
∴∠D=∠DBA,
∴BC∥PD,
∴四邊形BCPD是平行四邊形,
∵PO= AB=6,
∴PC=6,
∵∠ABD=∠C=30°,
∴OE=OB=3,
∴PE=3,
∴四邊形BCPD的面積=PCPE=6×3=18
.
科目:初中數學 來源: 題型:
【題目】如圖,P是邊長為1的正方形ABCD對角線AC上一動點(P與A、C不重合),點E在線段BC上,且PE=PB.
(1)求證:①PE=PD;②PE⊥PD;
(2)設AP=x,△PBE的面積為y.
①求出y關于x的函數關系式,并寫出x的取值范圍;
②當x取何值時,y取得最大值,并求出這個最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,a,b,c分別是ΔABC中∠A,∠B,∠C的對邊,P為BC上一點,以AP為直徑的圓O交AB于D,PE∥AB交AC于E,b,c是方程x2+kx+9=0的兩根,且(b2+c2)(b2+c2-14)-72=0,銳角B的正弦值等于。
(1)求K的值;
(2)設BD=x,求四邊形ADPE的面積為S關于x的函數關系式;
(3)問圓O是否能與BC相切?若能請求出x的值;若不能,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了讓學生了解環保知識,增強環保意識,紅星中學舉行了一次“環保知識競賽”,共有900名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數,滿分為100分)進行統計.請你根據下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
(1)填充頻率分布表中的空格;
(2)補全頻率分布直方圖;
(3)在該問題中的樣本容量是多少?
答: 。
(4)全體參賽學生中,競賽成績落在哪組范圍內的人數最多?(不要求說明理由)”
答: 。
(5)若成績在90分以上(不含90分)為優秀,則該校成績優秀的約為多少人?
答: 。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著地鐵和共享單車的發展,“地鐵+單車”已成為很多市民出行的選擇.李華從文化宮站出發,先乘坐地鐵,準備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間y1(單位:分鐘)是關于x的一次函數,其關系如下表:
地鐵站 | A | B | C | D | E |
x(千米) | 8 | 9 | 10 | 11.5 | 13 |
y1(分鐘) | 18 | 20 | 22 | 25 | 28 |
(1)求y1關于x的函數表達式;
(2)李華騎單車的時間y2(單位:分鐘)也受x的影響,其關系可以用y2=x2-11x+78來描述,請問:李華應選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某蓄水池的橫斷面示意圖如圖所示,分深水區和淺水區,如果這個注滿水的蓄水池以固定的流量把水全部放出,下面的圖象能大致表示水的深度h和放水時間t之間的關系的是( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com