精英家教網 > 初中數學 > 題目詳情

【題目】如圖,ABC中,ADBCD,下列條件:①∠B+DAC=90°;②∠B=DAC;=;AB2=BDBC.其中一定能夠判定ABC是直角三角形的有(

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

根據已知對各個條件進行分析,從而得到答案.

解:(1)不能,∵AD⊥BC,∴∠B+∠BAD=90°,∵∠B+∠DAC=90°,∴∠BAD=∠DAC,∴無法證明△ABC是直角三角形;

(2)能,∵∠B=∠DAC,則∠BAD=∠C,∴∠B+∠BAD=∠C+∠DAC=180°÷2=90°;

(3)能,

∵CD:AD=AC:AB,∠ADB=∠ADC=90°,

∴Rt△ABD∽Rt△CAD(直角三角形相似的判定定理),

∴∠ABD=∠CAD;∠BAD=∠ACD,

∵∠ABD+∠BAD=90°,

∴∠CAD+∠BAD=90°,

∵∠BAC=∠CAD+∠BAD,

∴∠BAC=90°;

(4)能,∵能說明△CBA∽△ABD,∴△ABC一定是直角三角形.

共有3個.

故選:C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某校在“我運動,我快樂”的技能比賽培訓活動中,在相同條件下,對甲、乙兩名同學的“單手運球”項目進行了5次測試,測試成績(單位:分)如下:根據右圖判斷正確的是(

A.甲成績的平均分低于乙成績的平均分;

B.甲成績的中位數高于乙成績的中位數;

C.甲成績的眾數高于乙成績的眾數;

D.甲成績的方差低于乙成績的方差.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】第二屆全國青年運動會將于20198月在太原開幕,這是山西歷史上第一次舉辦全國大型綜合性運動會,必將推動我市全民健康理念的提高.某體育用品商店近期購進甲、乙兩種運動衫各50件,甲種用了2000元,乙種用了2400元.商店將甲種運動衫的銷售單價定為60元,乙種運動衫的銷售單價定為88元.該店銷售一段時間后發現,甲種運動衫的銷售不理想,于是將余下的運動衫按照七折銷售;而乙種運動衫的銷售價格不變.商店售完這兩種運動衫至少可獲利2460元,求甲種運動衫按原價銷售件數的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,DBC的中點,EAD的中點,過點AAFBCBE的延長線于點F.

1)求證:△AEF≌△DEB;

2)求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是一張長20cm、寬12cm的矩形紙板,將紙板四個角各剪去一個邊長為cm的正方形,然后將四周突出部分折起,可制成一個無蓋紙盒.

1)這個無蓋紙盒的長為   cm,寬為   cm;(用含x的式子表示)

2)若要制成一個底面積是180m2的無蓋長方體紙盒,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了測量校園水平地面上一棵不可攀的樹的高度,學校數學興趣小組做了如下探索:根據光的反射定律,利用一面鏡子和一根皮尺,設計如下圖所示的測量方案:把一面很小的鏡子水平放置在離B(樹底)8.4米的點E處,然后沿著直線BE后退到點D,這時恰好在鏡子里看到樹梢頂點A,再用皮尺量得DE=3.2米,觀察者目高CD=1.6米,求樹AB的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)問題發現

如圖1,△ACB和△DCE均為等邊三角形,點A,DE在同一直線上,連接BE.填空:

AEB的度數為______

線段AD,BE之間的數量關系為______

(2)拓展探究

如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE90°,點A,DE在同一直線上,CM為△DCEDE邊上的高,連接BE,請判斷∠AEB的度數及線段CM,AE,BE之間的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】近日,我校八年級同學進行了體育測試.為了解大家的身體素質情況,一個課外活動小組隨機調查了部分同學的測試成績,并將結果分為“優”、“良”、“中”、“差”四個等級,分別記作、、、;根據調查結果繪制成如圖所示的扇形統計圖和條形統計圖(未完善),請結合圖中所給信息解答下列問題:

1)本次調查的學生總數為 人;

2)在扇形統計圖中,所對應扇形的圓心角 度,并將條形統計圖補充完整;

3)在“優”和“良”兩個等級的同學中各有兩人愿意接受進一步訓練,現打算從中隨機選出兩位進行訓練,請用列表法或畫樹狀圖的方法,求出所選的兩位同學測試成績恰好都為“良”的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】近日,深圳市人民政府發布了《深圳市可持續發展規劃》,提出了要做可持續發展的全球創新城市的目標,某初中學校了解學生的創新意識,組織了全校學生參加創新能力大賽,從中抽取了部分學生成績,分為5組:A50~60;B60~70;C70~80;D80~90;E90~100,統計后得到如圖所示的頻數分布直方圖(每組含最小值不含最大值)和扇形統計圖.

(1)抽取學生的總人數是   人,扇形C的圓心角是   °;

(2)補全頻數直方圖;

(3)該校共有2200名學生,若成績在70分以下(不含70分)的學生創新意識不強,有待進一步培養,則該校創新意識不強的學生約有多少人?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视