精英家教網 > 初中數學 > 題目詳情

【題目】甲騎自行車、乙騎摩托車沿相同路線由A地到B地,行駛過程中路程與時間的函數關系的圖象如圖. 根據圖象解決下列問題:

(1) 誰先出發?先出發多少時間?誰先到達終點?先到多少時間?

(2) 分別求出甲、乙兩人的行駛速度;

(3) 在什么時間段內,兩人均行駛在途中(不包括起點和終點)?在這一時間段內,請你根據下列情形,分別列出關于行駛時間x的方程或不等式(不化簡,也不求解):① 甲在乙的前面;② 甲與乙相遇;③ 甲在乙后面.

【答案】1)甲先出發,先出發10分鐘,乙先到達,先到達5分鐘;(2)甲的速度為0.2(千米/分),乙的速度為0.4(千米/分);(3甲在乙的前面:;甲與乙相遇:甲在乙的后面:

【解析】

試題(1)因為當y=0時,=0=10,所以甲先出發了10分鐘,又因當y=6時,=30=25,所以乙先到達了5分鐘;

2)都走了6公里,甲用了30分鐘,乙用了25﹣10=15分鐘,由此即可求出各自的速度;

3)由圖象,可知當10x25分鐘時兩人均行駛在途中,在圖象中找出兩圖象上的點,利用待定系數法分別求出它們的解析式,然后即可列出不等式.

試題解析:(1)甲先出發,先出發10分鐘.乙先到達終點,先到達5分鐘;

2)甲的速度為6÷30=0.2(千米/分),乙的速度為25―10=0.4(千米/分);

3)當10x25分鐘時兩人均行駛在途中.設=kx,因為=kx經過(306),所以6=30k,故k=0.2,=0.2x.設=mx+b=mx+b經過(10,0),(25,6),,,所以=,

時,即,10x20時,甲在乙的前面;

時,即,x=20時,甲與乙相遇;

時,即,20x25時,乙在甲的前面.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,已知A、O、B三點在同一直線上,射線OD、OE分別平分∠AOC、BOC

(1)求∠DOE的度數;

(2)如圖2,在∠AOD內引一條射線OF,使∠COF=,其他不變,設∠DOF=

①求∠AOF的度數(用含的代數式表示).

②若∠BOD是∠AOF2倍,求∠DOF的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了了解學生大課間活動的跳繩情況,隨機抽取了50名學生每分鐘跳繩的次數進行統計,把統計結果繪制成如表和直方圖.

次數

70≤x<90

90≤x<110

110≤x<130

130≤x<150

150≤x<170

人數

8

23

16

2

1

根據所給信息,回答下列問題:

(1)本次調查的樣本容量是;
(2)本次調查中每分鐘跳繩次數達到110次以上(含110次)的共有的共有人;
(3)根據上表的數據補全直方圖;
(4)如果跳繩次數達到130次以上的3人中有2名女生和一名男生,學校從這3人中抽取2名學生進行經驗交流,求恰好抽中一男一女的概率(要求用列表法或樹狀圖寫出分析過程).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算下列各題
(1)計算:(﹣1)2014﹣|﹣ |+ ﹣( ﹣π)0
(2)先化簡,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2與x軸交于點A(1,0)和B(4,0).

(1)求拋物線的解析式;
(2)若拋物線的對稱軸交x軸于點E,點F是位于x軸上方對稱軸上一點,FC∥x軸,與對稱軸右側的拋物線交于點C,且四邊形OECF是平行四邊形,求點C的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點P,使△OCP是直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1) 如圖1,在一條筆直的公路兩側,分別有A、B兩個村莊,現在要在公路l旁建一座火力發電廠,向A、B兩個村莊供電,為使所用的電線最短,請問供電廠P應健在何處?畫出圖形,不寫作法,保留作圖痕跡;

(2) 如圖2,若要向4個村莊A、B、C、D供電,供電廠P又該建在何處能使所用電線最短呢?畫出圖形,不寫作法,保留作圖痕跡;

(3)A、B、C、D如圖3,連接AC并延長到E,使CE=AC,連接BD并反向延長到F,不寫作法,保留作圖痕跡.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點A(2,3)和點B(0,2),點A在反比例函數y= 的圖象上.作射線AB,再將射線AB繞點A按逆時針方向旋轉45°,交反比例函數圖象于點C,則點C的坐標為.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內角∠ABC、外角∠ACF.以下結論:①AD∥BC;②∠ACB=2∠ADB;③;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正確的結論有_______個.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,有一個只允許單向通過的窄道口,通常情況下,每分鐘可以通過9人.一天王老師到達道口時,發現由于擁擠,每分鐘只能有3人通過道口,此時,自己前面還有36人等待通過(假定先到達的先過,王老師過道口的時間忽略不計),通過道口后,還需7分鐘到達學校.

1)此時,若繞道而行,要15分鐘才能到達學校,從節省時間考慮,王老師應選擇繞道去學校,還是選擇通過擁擠的道口去學校?

2)若在王老師等人的維持下,幾分鐘后秩序恢復正常(維持秩序期間,每分鐘仍有3人通過道口),結果王老師比在擁擠的情況下提前6分鐘通過道口,問維持秩序的時間是多長?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视