精英家教網 > 初中數學 > 題目詳情

【題目】已知,如圖1,在ABCD中,點E是AB中點,連接DE并延長,交CB的延長線于點F.

(1)求證:△ADE≌△BFE;

(2)如圖2,點G是邊BC上任意一點(點G不與點B、C重合),連接AG交DF于點H,連接HC,過點A作AK∥HC,交DF于點K.

①求證:HC=2AK;

②當點G是邊BC中點時,恰有HD=nHK(n為正整數),求n的值.

【答案】(1)證明見解析;(2)證明見解析;(3)n=4.

【解析】

此題涉及的知識點是兩三角形全等的判定,平行四邊形的性質點的綜合應用,解題時先根據已知條件證明△ADE≌△BFE,再根據兩三角形相似的判定,等量代換得出邊的大小關系

(1)證明:∵四邊形ABCD是平行四邊形,

∴AD∥BC,

∴∠ADE=∠BFE,∠A=∠FBE,

在△ADE和△BFE中,

,

∴△ADE≌△BFE;

(2)如圖2,作BN∥HCEFN,

∵△ADE≌△BFE,

∴BF=AD=BC,

∴BN=HC,

由(1)的方法可知,△AEK≌△BEN,

∴AK=BN,

∴HC=2AK;

(3)如圖3,作GM∥DFHCM,

∵點G是邊BC中點,

∴CG=CF,

∵GM∥DF,

∴△CMG∽△CHF,

==,

∵AD∥FC,

∴△AHD∽△GHF,

===,

=,

∵AK∥HC,GM∥DF,

∴△AHK∽△HGM,

==,

=,即HD=4HK,

∴n=4.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,∠CAB的角平分線AD交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.

(1)求證:DE是⊙O的切線;

(2)若∠CAB=60°,DE=3,求AC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某企業工會開展“一周工作量完成情況”調查活動,隨機調查了部分員工一周的工作量剩余情況,并將調查結果統計后繪制成如圖 1 和圖 2 所示的不完整統計圖

(1) 被調查員工的人數為  人:

(2) 把條形統計圖補充完整;

(3) 若該企業有員工 10000 人,請估計該企業某周的工作量完成情況為“剩少量”的員工有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的對稱軸是x=﹣1,且過點(,0),有下列結論:abc>0;②a﹣2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤abmamb);其中所有錯誤的結論有( 。﹤

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD的周長為36,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為(  )

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,將一個量角器與一張等邊三角形(△ABC)紙片放置成軸對稱圖形,CDAB,垂足為D,半圓(量角器)的圓心與點D重合,此時,測得頂點C到量角器最高點的距離CE=2cm,將量角器沿DC方向平移1cm,半圓(量角器)恰與△ABC的邊AC,BC相切,如圖2,AB的長為__________cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ ABC中,∠ACB=90°,AD平分BAC, AD的垂直平分線EFAD于點E,交BC的延長線于點F,交AB于點G,交AC于點H

(1)依題意補全圖形;

(2)求證:∠BAD=∠BFG;

(3)試猜想AB,FBFD之間的數量關系并進行證明

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知,Rt△中,,點上一點,,,過點的垂線交射線于點,延長于點.

(1)求的長;

(2)求的正切值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,拋物線y=ax2-x+c經過原點O與點A6,0)兩點,過點AACx軸,交直線y=2x-2于點C,且直線y=2x-2x軸交于點D

1)求拋物線的解析式,并求出點C和點D的坐標;

2)求點A關于直線y=2x-2的對稱點A′的坐標,并判斷點A′是否在拋物線上,并說明理由;

3)點Px,y)是拋物線上一動點,過點Py軸的平行線,交線段CA′于點Q,設線段PQ的長為l,求lx的函數關系式及l的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视