【題目】如圖,是由一些大小相同且棱長為1的小正方體組合成的簡單幾何體.
(1)該幾何體的立體圖如圖所示,請在下面方格紙中分別畫出它的左視圖和俯視圖(請涂上陰影):
(2)這個簡單幾何體的表面積是 .
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得
的長,又由OE∥AB,證得
根據相似三角形的對應邊成比例,即可求得
的長,然后利用三角函數的知識,求得
與
的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在ABCD中,E是AD邊的中點,連接BE.
(1)如圖①,若BC=2,則AE的長=__;
(2)如圖②,延長BE交CD的延長線于點F,求證:FD=AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在□ABCD中,CEAD于點E,且CB=CE,點F為CD邊上的一點,CB=CF,連接BF交CE于點G.
(1)若,CF=
,求CG的長;
(2)求證:AB=ED+CG
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AC為對角線,延長CD至點E使CE=CA,連接AE。F為AB上一點,且BF=DE,連接FC.
(1)若DE=1,CF=2,求CD的長。
(2)如圖2,點G為線段AE的中點,連接BG交AC于H,若∠BHC+∠ABG=600,求證:AF+CE=AC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了深化課程改革,某校積極開展校本課程建設,計劃成立“文學鑒賞”、“國際象棋”、“音樂舞蹈”和“書法”等說個社團,要求每位學生都自主選擇其中一個社團,為此,隨機調查了本校部分學生選擇社團的意向.并將調查結果繪制成如下統計圖表(不完整):
選擇意向 | 文學鑒賞 | 國際象棋 | 音樂舞蹈 | 書法 | 其他 |
所占百分比 | a | 20% | b | 10% | 5% |
根據統計圖表的信息,解答下列問題:
(1)求本次抽樣調查的學生總人數及a、b的值;
(2)將條形統計圖補充完整;
(3)若該校共有1200名學生,試估計全校選擇“音樂舞蹈”社團的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC的直角邊BC在x軸正半軸上,斜邊AC邊上的中線BD反向延長線交y軸負半軸于E,雙曲線y=(x>0)的圖象經過點A,若△BEC的面積為6,則k等于( )
A. 3 B. 6 C. 12 D. 24
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,動點P從B點出發,沿B→C→D→A勻速運動,設點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.
(1)當點P運動的路程x=4時,△ABP的面積為y= ;
(2)求:線段AB的長;
(3)求:梯形ABCD的面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點D是等邊三角形ABC外一點,且DB=DC,∠BDC=120°,將一個三角尺60°角的頂點放在點D上,三角尺的兩邊DP,DQ分別與射線AB,CA相交于E,F兩點.
(1)當EF∥BC時,如圖①所示,求證:EF=BE+CF.
(2)當三角尺繞點D旋轉到如圖②所示的位置時,線段EF,BE,CF之間的上述數量關系是否成立?如果成立,請說明理由;如果不成立,寫出EF,BE,CF之間的數量關系,并說明理由.
(3)當三角尺繞點D繼續旋轉到如圖③所示的位置時,(1)中的結論是否發生變化?如果不變化,直接寫出結論;如果變化,請直接寫出EF,BE,CF之間的數量關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com