【題目】如圖,AB是半圓O的直徑,C是半圓O上的一點,CF切半圓O于點C,BD⊥CF于為點D,BD與半圓O交于點E.
(1)求證:BC平分∠ABD.
(2)若DC=8,BE=4,求圓的直徑.
【答案】(1)證明見解析;(2);
【解析】
(1)連接OC,根據CD為切線可得OC⊥CD,再根據平行線的性質即可得出結論;
(2)連接AE交OC于G,根據圓與平行線的性質易得四邊形CDEG為矩形,再根據勾股定理即可得出結論.
(1)證明:連結OC,如圖,
∵CD為切線,
∴OC⊥CD,
∵BD⊥DF,
∴OC∥BD,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2,
∴∠2=∠3,
∴BC平分∠ABD;
(2)解:連結AE交OC于G,如圖,
∵AB為直徑,
∴∠AEB=90°,
∵OC∥BD,
∴OC⊥CD,
∴AG=EG,
易得四邊形CDEG為矩形,
∴GE=CD=8,
∴AE=2EG=16,
在Rt△ABE中,AB==4
,
即圓的直徑為4.
科目:初中數學 來源: 題型:
【題目】小孟同學將等腰直角三角板ABC(AC=BC)的直角頂點C放在一直線m上,將三角板繞C點旋轉,分別過A,B兩點向這條直線作垂線AD,BE,垂足為D,E.
(1)如圖1,當點A,B都在直線m上方時,猜想AD,BE,DE的數量關系是 ;
(2)將三角板ABC繞C點按逆時針方向旋轉至圖2的位置時,點A在直線m上方,點B在直線m下方.(1)中的結論成立嗎?請你寫出AD,BE,DE的數量關系,并證明你的結論.
(3)將三角板ABC繼續繞C點逆時針旋轉,當點A在直線m的下方,點B在直線m的上方時,請你畫出示意圖,按題意標好字母,直接寫出AD,BE,DE的數量關系結論 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,連接AC、BD.在四邊形ABCD的外部以BC為一邊作等邊三角形BCE,連接AE.
(1)求證:BD=AE;
(2)若AB=2,BC=3,求BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛貨車早晨7∶00出發,從甲地駛往乙地送貨.如圖是貨車行駛路程y(km)與行駛時間x(h)的完整的函數圖像(其中點B、C、D在同一條直線上),小明研究圖像得到了以下結論:
①甲乙兩地之間的路程是100 km;
②前半個小時,貨車的平均速度是40 km/h;
③8∶00時,貨車已行駛的路程是60 km;
④最后40 km貨車行駛的平均速度是100 km/h;
⑤貨車到達乙地的時間是8∶24,
其中,正確的結論是( )
A.①②③④B.①③⑤C.①③④D.①③④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有若干個邊長為2的正方形,若正方形的一個頂點是正方形Ⅰ的中心O1,如圖所示,類似的正方形Ⅲ的一個頂點是正方形Ⅱ的中心O2,并且正方形Ⅰ與正方形Ⅲ不重疊,如果若干個正方形都按這種方法拼接,需要m個正方形能使拼接處的圖形的陰影部分的面積等于一個正方形的面積.現有一拋物線y=mx2+nx+3,其頂點在x軸上,則該拋物線的對稱軸為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為營造濃厚的創建全國文明城市氛圍,東營市某中學委托制衣廠制作“最美東營人”和“最美志愿者”兩款文化衫.若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需145元.
(1)求“最美東營人”和“最美志愿者”兩款文化衫每件各多少元?
(2)若該中學要購進“最美東營人”和“最美志愿者”兩款文化衫共90件,總費用少于1595元,并且“最美東營人”文化衫的數量少于“最美志愿者”文化衫的數量,那么該中學有哪幾種購買方案?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com