【題目】圖①,圖②都是由四條邊長均為1的小四邊形構成的網格,每個小四邊形的頂點稱為格點.點O,M,N,A,B均在格點上,請僅用無刻度直尺在網格中完成下列畫圖(保留連線痕跡).
(1)在圖①中,畫出△OMP≌△ONP,要求點P在格點上.
(2)在圖②中,畫一個Rt△ABC,∠ACB=90°,要求點C在格點上.
科目:初中數學 來源: 題型:
【題目】拓展與探索:如圖,在正△ABC中,點E在AC上,點D在BC的延長線上.
(1)如圖1,AE=EC=CD,求證:BE=ED;
(2)如圖2,若E為AC上異于A、C的任一點,AE=CD,(1)中結論是否仍然成立?為什么?
(3)若E為AC延長線上一點,且AE=CD,試探索BE與ED間的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=12cm,BC=9cm,點D為AB的中點.
(1)如果點P在線段BC上以3厘米/秒的速度由B向C點運動,同時點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,當經過1秒時,△BPD與△CQP是否全等,請判斷并說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD≌△CPQ?
(2)若點Q以②的運動速度從點C出發,點P以原來運動速度從點B同時出發,都逆時針沿△ABC的三邊運動,求經過多長時間,點P與點Q第一次在△ABC的哪條邊上會相遇?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:如圖①,在△ABD與△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易證:△ABD≌△CAE.(不需要證明)
特例探究:如圖②,在等邊△ABC中,點D、E分別在邊BC、AB上,且BD=AE,AD與CE交于點F.求證:△ABD≌△CAE.
歸納證明:如圖③,在等邊△ABC中,點D、E分別在邊CB、BA的延長線上,且BD=AE.△ABD與△CAE是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展應用:如圖④,在等腰三角形中,AB=AC,點O是AB邊的垂直平分線與AC的交點,點D、E分別在OB、BA的延長線上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,點為二次函數
圖象的頂點,直線
分別交
軸正半軸,
軸于點
,
.
(1)判斷頂點是否在直線
上,并說明理由.
(2)如圖1,若二次函數圖象也經過點,
,且
,根據圖象,寫出
的取值范圍.
(3)如圖2,點坐標為
,點
在
內,若點
,
都在二次函數圖象上,試比較
與
的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(實驗操作)如圖①,在中,
,現將
邊沿
的平分線
翻折,點
落在
邊的點
處;再將線段
沿
翻折到線段
,連接
.
(探究發現)若點,
,
三點共線,則
的大小是______,
的大小是________,此時三條線段
,
,
之間的數量關系是________.
(應用拓展)如圖②,將圖①中滿足(實驗操作)與(探究發現)的的邊
延長至
,使得
,連接
,直接寫出
的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DE⊥BC于點E.
(1)試判斷DE與⊙O的位置關系,并說明理由;
(2)過點D作DF⊥AB于點F,若BE=3,DF=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】家用電滅蚊器的發熱部分使用了PTC發熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內)變化的大致圖象如圖所示.通電后,發熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反例關系,且在溫度達到30℃時,電阻下降到最小值;隨后電阻承溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求R和t之間的關系式;
(2)家用電滅蚊器在使用過程中,溫度在什么范圍內時,發熱材料的電阻不超過4kΩ.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com