【題目】如圖,平行四邊形ABCD中,E是AB的中點,CE和BD交于點O,如△ODC的面積為4,則四邊形AEOD的面積是( 。
A. 3 B. 4 C. 5 D. 6
【答案】C
【解析】
根據平行四邊形的性質可得出CD∥BE、CD=AB,進而可得出△COD∽△EOB,根據相似三角形的性質可求出S△EOB和的值,由三角形的面積可得出S△BCD=
S△COD=6,再根據平行四邊形的性質結合S四邊形AEOD=S△ABD-S△EOB,即可求出四邊形AEOD的面積.
解:∵四邊形ABCD為平行四邊形,
∴CD∥BE,CD=AB,
∴△COD∽△EOB,
∴=(
)2.
∵E是AB的中點,
∴AB=2BE,
∴CD=2BE,
∴=22=4,
=2,
∴S△EOB=1,BD=BO+OD=OD,
∴S△BCD=S△COD=6.
∵四邊形ABCD為平行四邊形,
∴S△ABD=S△BCD=6,
∴S四邊形AEOD=S△ABD-S△EOB=6-1=5.
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,C、E和B、D、F分別在∠GAH的兩邊上,且AB=BC=CD=DE=EF,若∠A=18°,則∠GEF的度數是( )
A. 80° B. 90° C. 100° D. 108°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電腦經銷商計劃購進一批電腦機箱和液晶顯示器,若購電腦機箱10臺和液液晶顯示器8臺,共需要資金7000元;若購進電腦機箱2臺和液示器5臺,共需要資金4120元.
(1)每臺電腦機箱、液晶顯示器的進價各是多少元?
(2)該經銷商購進這兩種商品共50臺,而可用于購買這兩種商品的資金不超過22240元.根據市場行情,銷售電腦機箱、液晶顯示器一臺分別可獲利10元和160元.該經銷商希望銷售完這兩種商品,所獲利潤不少于4100元.試問:該經銷商有哪幾種進貨方案?哪種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:關于x的一元二次方程mx2﹣(2m﹣2)x+m=0有實根.
(1)求m的取值范圍;
(2)若原方程兩個實數根為x1,x2,是否存在實數m,使得=1?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在2016年“雙十一”期間,某快遞公司計劃租用甲、乙兩種車輛快遞貨物,從貨物量來計算:若租用兩種車輛合運,10天可以完成任務;若單獨租用乙種車輛,完成任務的天數是單獨租用甲種車輛完成任務天數的2倍.
(1)求甲、乙兩種車輛單獨完成任務分別需要多少天?
(2)已知租用甲、乙兩種車輛合運需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨租甲種車輛、單獨租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系中,直線y=2kx-2k (k>0)交y軸于點B,與直線y=kx交于點A.
(1)求點A的橫坐標;
(2)直接寫出的x的取值范圍;
(3)若P(0,3)求PA+OA的最小值,并求此時k的值;
(4)若C(0,2)以A,B,C,D為頂點的四邊形是以BC為一條邊的菱形,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與探究:
(1)計算判斷:(計算并判斷大小,填寫符號:“>”“<”或“=”)
①當,
時,
_____
;
②當,
時,
_____
;
③當,
時,
______
;
④當,
時,
______
;
⑤當,
時,
______
;
⑥當,
時,
_______
;
…
(2)歸納猜想:猜想并寫出關于與
(
,
是常數,且
,
)之間的數量關系;
(3)探究證明:請補全以下證明過程:
證明:根據一個實數的平方是非負數,可得,
∴,
∵,
,
…
(4)實踐應用:要制作面積為的長方形(或正方形)框架,直接利用探究得出的結論,求出框架周長的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道,任意一個有理數與無理數的和為無理數,任意一個不為零的有理數與一個無理數的積為無理數,而零與無理數的積為零.由此可得:如果mx+n=0,其中m、n為有理數,x為無理數,那么m=0且n=0.
(1)如果,其中a、b為有理數,那么a= ,b= .
(2)如果,其中a、b為有理數,求a+2b的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com