精英家教網 > 初中數學 > 題目詳情
如圖所示,在菱形ABCD中,E、F分別為AB、AD上兩點,AE=AF.
(1)求證:CE=CF;
(2)若∠ECF=60°,∠B=80°,試問BC=CE嗎?請說明理由.
(1)證明:∵ABCD是菱形,
∴AB=AD,BC=CD,∠B=∠D,
∵AE=AF,
∴AB-AE=AD-AF,
∴BE=DF,(2分)
在△BCE與△DCF中,∵
BE=DF
∠B=∠D
BC=CD
,
∴△BCE≌△DCF,(3分)
∴CE=CF;(4分)

(2)結論是:BC=CE.(5分)
理由如下:
∵ABCD是菱形,∠B=80°,
∴∠A=100°,
∵AE=AF,
∠AEF=∠AFE=
180°-100°
2
=40°

由(1)知CE=CF,∠ECF=60°,
∴△CEF是等邊三角形,
∴∠CEF=60°,
∴∠CEB=180°-60°-40°=80°,(6分)
∴∠B=∠CEB,
∴BC=CE.(8分)
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于D,交AB于E,且CF=BE.
(1)求證:四邊形BECF是菱形;
(2)當∠A的大小滿足什么條件時,菱形BECF是正方形?回答并證明你的結論.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖所示,菱形ABCD的周長為20cm,DE⊥AB,垂足為E,sinA=
3
5
,則BD=______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

平面直角坐標系中,四邊形ABCD的頂點坐標分別是A(-3,0)、B(0,2)、C(3,0)、D(0,-2),四邊形ABCD是( 。
A.矩形B.菱形C.正方形D.梯形

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:菱形ABCD的兩條對角線AC與BD相交于點O,且AC=6,BD=8,求菱形的周長和面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

兩組鄰邊分別相等的四邊形我們稱它為箏形.
如圖,在箏形ABCD中,AB=AD,BC=DC,AC與BD相交于點O.
(1)下列判斷正確的有______(填序號).
①AC、BD互相垂直;②AC、BD互相平分;
③AC平分∠BAD、∠BCD;④BD平分∠ABD、∠ADC.
(2)求證:△ABC≌△ADC.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,?ABCD中,AE,CF分別是∠BAD,∠BCD的角平分線,請添加一個條件______使四邊形AECF為菱形.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在一張長12cm、寬5cm的矩形紙片內,要折出一個菱形.李穎同學按照取兩組對邊中點的方法折出菱形EFGH(見方案一),張豐同學按照沿矩形的對角線AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(見方案二),請你通過計算,比較李穎同學和張豐同學的折法中,哪種菱形面積較大?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在邊長為6的菱形ABCD中,動點M從點A出發,沿A?B?C向終點C運動,連接DM交AC于點N.

(1)如圖1,當點M在AB邊上時,連接BN:
①求證:△ABN≌△ADN;
②若∠ABC=60°,AM=4,∠ABN=α,求點M到AD的距離及tanα的值.
(2)如圖2,若∠ABC=90°,記點M運動所經過的路程為x(6≤x≤12).試問:x為何值時,△ADN為等腰三角形.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视