【題目】如圖,點D是等邊△ABC中BC邊的延長線上一點,且AC=CD,以AB為直徑作⊙O,分別交邊AC、BC于點E、點F
(1)求證:AD是⊙O的切線;
(2)連接OC,交⊙O于點G,若AB=4,求線段CE、CG與圍成的陰影部分的面積S.
【答案】
(1)
證明:∵△ABC為等邊三角形,
∴AC=BC,
又∵AC=CD,
∴AC=BC=CD,
∴△ABD為直角三角形,
∴AB⊥AD,
∵AB為直徑,
∴AD是⊙O的切線;
(2)
解:連接OE,
∵OA=OE,∠BAC=60°,
∴△OAE是等邊三角形,
∴∠AOE=60°,
∵CB=BA,OA=OB,
∴CO⊥AB,
∴∠AOC=90°,
∴∠EOC=30°,
∵△ABC是邊長為4的等邊三角形,
∴AO=2,由勾股定理得:OC==2
,
同理等邊三角形AOE邊AO上高是=
,
S陰影=S△AOC﹣S等邊△AOE﹣S扇形EOG==
.
【解析】(1)求出∠DAC=30°,即可求出∠DAB=90°,根據切線的判定推出即可;
(2)連接OE,分別求出△AOE、△AOC,扇形OEG的面積,即可求出答案.
【考點精析】解答此題的關鍵在于理解切線的判定定理的相關知識,掌握切線的判定方法:經過半徑外端并且垂直于這條半徑的直線是圓的切線,以及對扇形面積計算公式的理解,了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
科目:初中數學 來源: 題型:
【題目】已知:AB、CD為⊙O的直徑,弦BE交CD于點F,連接DE交AB于點G,GO=GD.
(1)如圖1,求證:DE=DF;
(2)如圖2,作弦AK∥DC,AK交BE于點N,連接CK,求證:四邊形KNFC為平行四邊形;
(3)如圖3,作弦CH,連接DH,∠CDH=3∠EDH,CH=2 ,BE=4
,求DH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數 ,當自變量x取m時對應的值大于0,當自變量x分別取m﹣1、m+1時對應的函數值為y1、y2 , 則y1、y2必須滿足( )
A.y1>0、y2>0
B.y1<0、y2<0
C.y1<0、y2>0
D.y1>0、y2<0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關系.
[探究發現]
小聰同學利用圖形變換,將△CAD繞點C逆時針旋轉90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.
根據“邊角邊”,可證△CEH≌ , 得EH=ED.
在Rt△HBE中,由定理,可得BH2+EB2=EH2 , 由BH=AD,可得AD、DE、EB之間的等量關系是 。
[實踐運用]
(1)如圖(2),在正方形ABCD中,△AEF的頂點E、F分別在BC、CD邊上,高AG與正方形的邊長相等,求∠EAF的度數;
(2)在(1)條件下,連接BD,分別交AE、AF于點M、N,若BE=2,DF=3,BM=2,運用小聰同學探究的結論,求正方形的邊長及MN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a>0)過(﹣2,0),(2,3)兩點,那么拋物線的對稱軸( 。
A.只能是x=﹣1
B.可能是y軸
C.可能在y軸右側且在直線x=2的左側
D.可能在y軸左側且在直線x=﹣2的右側
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,紙片ABCD中,AD=5,SABCD=15,過點A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE′的位置,拼成四邊形AEE′D。
(1)如圖1,紙片ABCD中,AD=5,SABCD=15,過點A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE′的位置,拼成四邊形AEE′D,則四邊形AEE′D的形狀為 ( )
A.平行四邊形
B.菱形
C.矩形
D.正方形
(2)如圖2,在(1)中的四邊形紙片AEE′D中,在EE′上取一點F,使EF=4,剪下△AEF,將它平移至△DE′F′的位置,拼成四邊形AFF′D.
①求證:四邊形AFF′D是菱形.
②求四邊形AFF′D的兩條對角線的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點M(﹣3,m)是一次函數y=x+1與反比例函數y=(k≠0)的圖象的一個交點.
(1)求反比例函數表達式
(2)點P是x軸正半軸上的一個動點,設OP=a(a≠2),過點P作垂直于x軸的直線,分別交一次函數,反比例函數的圖象于點A,B,過OP的中點Q作x軸的垂線,交反比例函數的圖象于點C,△ABC′與△ABC關于直線AB對稱.
①當a=4時,求△ABC′的面積;
②當a的值為 3 時,△AMC與△AMC′的面積相等。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com