【題目】如圖,PA,PB分別與⊙O相切于A,B兩點,∠ACB=60°.
(1)求∠P的度數;
(2)若⊙O的半徑長為2cm,求圖中陰影部分的面積.
【答案】(1)∠P=60°;(2)4-
π.
【解析】
(1)先證明∠P=180°-∠AOB,根據∠AOB=2∠ACB求出∠AOB即可解決問題.
(2)連接OP,如圖,根據切線的性質和切線長定理得到∠PAO=∠PBO=90°,∠APO=30°,則根據四邊形內角和得到∠AOB=180°-∠APB=120°,再在Rt△PAO中利用含30度的直角三角形三邊的關系得到AP=OA=2
,則S△PAO=2
,然后根據扇形面積公式,利用陰影部分的面積=S四邊形AOBP-S扇形AOB進行計算.
解:(1)連接OA、OB,
∵PA、PB是⊙O切線,
∴PA⊥OA,PB⊥OB,
∴∠PAO=∠PBO=90°,
∵∠P+∠PAO+∠AOB+∠PBO=360°,
∴∠P=180°-∠AOB,
∵∠ACB=60°,
∴∠AOB=2∠ACB=120°,
∴∠P=180°-120°=60°,
(2)如圖,連接OP,
∵PA,PB是⊙O的兩條切線,
∴OA⊥AP,OB⊥PB,OP平分∠APB,
∴∠PAO=∠PBO=90°,∠APO=×60°=30°,
∴∠AOB=180°-∠APB=180°-60°=120°,
在Rt△PAO中,∵OA=2,∠APO=30°,
∴AP=OA=2
,
∴S△PAO=×2×2
=2
,
∴陰影部分的面積=S四邊形AOBP-S扇形AOB=2×2-
=4
-
π.
科目:初中數學 來源: 題型:
【題目】某電子廠商設計了一款制造成本為18元新型電子廠品,投放市場進行試銷.經過調查,得到每月銷售量y(萬件)與銷售單價x(元)之間的部分數據如下:
銷售單價x(元/件) | … | 20 | 25 | 30 | 35 | … |
每月銷售量y(萬件) | … | 60 | 50 | 40 | 30 | … |
(1)求出每月銷售量y(萬件)與銷售單價x(元)之間的函數關系式.
(2)求出每月的利潤z(萬元)與銷售單x(元)之間的函數關系式.
(3)根據相關部門規定,這種電子產品的銷售利潤率不能高于50%,而且該電子廠制造出這種產品每月的制造成本不能超過900萬元.那么并求出當銷售單價定為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?(利潤=售價﹣制造成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,矩形的一條邊長為x,周長的一半為y,定義(x,y)為這個矩形的坐標。如圖2,在平面直角坐標系中,直線x=1,y=3將第一象限劃分成4個區域,已知矩形1的坐標的對應點A落在如圖所示的雙曲線上,矩形2的坐標的對應點落在區域④中,則下面敘述中正確的是( )
A. 點A的橫坐標有可能大于3
B. 矩形1是正方形時,點A位于區域②
C. 當點A沿雙曲線向上移動時,矩形1的面積減小
D. 當點A位于區域①時,矩形1可能和矩形2全等
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】跳繩是大家喜聞樂見的一項體育運動,集體跳繩時,需要兩人同頻甩動繩子,當繩子甩到最高處時,其形狀可近似看作拋物線,下圖是小明和小亮甩繩子到最高處時的示意圖,兩人拿繩子的手之間的距離為4,離地面的高度為1
,以小明的手所在位置為原點建立平面直角坐標系.
(1)當身高為15的小紅站在繩子的正下方,且距小明拿繩子手的右側1
處時,繩子剛好通過小紅的頭頂,求繩子所對應的拋物線的表達式;
(2)若身高為的小麗也站在繩子的正下方.
①當小麗在距小亮拿繩子手的左側1.5處時,繩子能碰到小麗的頭嗎?請說明理由;
②設小麗與小亮拿繩子手之間的水平距離為,為保證繩子不碰到小麗的頭頂,求
的取值范圍.(參考數據:
取3.16)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形的頂點
與坐標原點重合,頂點
分別在坐標軸的正半軸上,
,點
在直線
上,直線
與折線
有公共點.
(1)點的坐標是 ;
(2)若直線經過點
,求直線
的解析式;
(3)對于一次函數,當
隨
的增大而減小時,直接寫出
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國家為了實現2020年全面脫貧目標,實施“精準扶貧”戰略,采取異地搬遷,產業扶持等措施.使貧困戶的生活條件得到改善,生活質量明顯提高.某旗縣為了全面了解貧困縣對扶貧工作的滿意度情況,進行隨機抽樣調查,分為四個類別:A.非常滿意;B.滿意;C.基本滿意;D.不滿意.依據調查數據繪制成圖1和圖2的統計圖(不完整).
根據以上信息,解答下列問題:
(1)將圖1補充完整;
(2)通過分析,貧困戶對扶貧工作的滿意度(A、B、C類視為滿意)是 ;
(3)市扶貧辦從該旗縣甲鄉鎮3戶、乙鄉鎮2戶共5戶貧困戶中,隨機抽取兩戶進行滿意度回訪,求這兩戶貧困戶恰好都是同一鄉鎮的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,半徑為3的⊙O經過等邊△ABO的頂點A、B,點P為半徑OB上的動點,連接AP,過點P作PC⊥AP交⊙O于點C,當∠ACP=30°時,AP的長為( 。
A. 3B. 3或C.
D. 3或
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數
的圖象經過點
,直線
與x軸交于點
.
(1)求的值;
(2)過第二象限的點作平行于x軸的直線,交直線
于點C,交函數
的圖象于點D.
①當時,判斷線段PD與PC的數量關系,并說明理由;
②若,結合函數的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,矩形OABC的頂點A(﹣6,0),C(0,2).將矩形OABC繞點O順時針方向旋轉,使點A恰好落在OB上的點A1處,則點B的對應點B1的坐標為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com