【題目】如圖,等邊三角形內接于,點P在弧BC上,PA與BC相交于點D,若PB=3,PC=6,則PD=( )
A. 1.5 B. C. 2 D.
【答案】C
【解析】在PA上截取PE=PB,連接BE,
∵△ABC是等邊三角形,∠ACB=APB,
∴∠APB=∠ACB=∠ABC=60°,AB=BC,
∴△BEP是等邊三角形,BE=PE=PB,
∴∠ABC-∠EBC=∠EBP-∠EBC=60°-∠EBC;
∴∠ABE=∠CBP;
∵在△ABE與CBP中, ,
∴△ABE≌△CBP,
∴AE=CP,
∴AP=AE+PE=PB+PC,
∵PB=3,PC=6,
∴PA=6+3=9,
∵∠BAP=∠DAB(公共角),
∠ABC=∠ACB=∠APB=60°,
∴△ABD∽△APB,
∴ ,
∴,
∴BD=AB=
AC,
∵∠PBD=∠PAC,
∠BPD=∠APC=60°,
∴△BPD∽△APC,
∴,
∴,
∴PD=2,
故選C.
科目:初中數學 來源: 題型:
【題目】已知函數,畫出圖象并根據函數圖象回答下列問題:
(1)列表、描點、連線
x | |||||
(2)的兩個解是多少?
(3)x取何值時,y>0?
(4)x取何值時,拋物線在x軸上或下方?
(5)拋物線與直線y=k有唯一的交點,則k= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l1∥l2,且l3和l1、l2分別交于A、B兩點,點P在直線AB上.
(1)試說明∠1,∠2,∠3之間的關系式;(要求寫出推理過程)
(2)如果點P在A、B兩點之間(點P和A、B不重合)運動時,試探究∠1,∠2,∠3之間的關系是否發生變化?(只回答)
(3)如果點P在A、B兩點外側(點P和A、B不重合)運動時,試探究∠1,∠2,∠3之間的關系.(要求寫出推理過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,已知一次函數y=x+1的圖象與x軸,y軸分別交于A,B兩點,以AB為邊在第二象限內作正方形ABCD.
(1)求邊AB的長;
(2)求點C,D的坐標;
(3)在x軸上是否存在點M,使△MDB的周長最小?若存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有質地均勻的A、B、C、D四張卡片,上面對應的圖形分別是圓、正方形、正三角形、平行四邊形,將這四張卡片放入不透明的盒子中搖勻,從中隨機抽出一張(不放回),再隨機抽出第二張.
(1)如果要求抽出的兩張卡片上的圖形,既有圓又有三角形,請你用列表或畫樹狀圖的方法,求出出現這種情況的概率;
(2)因為四張卡片上有兩張上的圖形,既是中心對稱圖形,又是軸對稱圖形,所以小明和小東約定做一個游戲,規則是:如果抽出的兩個圖形,既是中心對稱圖形又是軸對稱圖形,則小明贏;否則,小東贏.問這個游戲公平嗎?為什么?如果不公平,請你設計一個公平的游戲規則.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:∠MON=80°,OE平分∠MON,點A、B、C分別是射線OM、OE、ON上的動點(A、B、C不與點O 重合),連接AC交射線OE于點D.設∠OAC=x°.
(1)如圖1,若AB∥ON,則:①∠ABO的度數是 ;
②如圖2,當∠BAD=∠ABD時,試求x的值(要說明理由);
(2)如圖3,若AB⊥OM,則是否存在這樣的X的值,使得△ADB中有兩個相等的角?若存在,直接寫出x的值;若不存在,說明理由.(自己畫圖)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若一個四邊形的兩條對角線互相垂直且相等,則稱這個四邊形為“奇妙四邊形”.如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為奇妙四邊形.根據“奇妙四邊形”對角線互相垂直的特征可得“奇妙四邊形”的一個重要性質:“奇妙四邊形”的面積等于兩條對角線乘積的一半.根據以上信息回答:
(1)矩形__________“奇妙四邊形”(填“是”或“不是”);
(2)如圖2,已知⊙O的內接四邊形ABCD是“奇妙四邊形”,若⊙O的半徑為6,∠BCD=60°.求“奇妙四邊形”ABCD的面積;
(3)如圖3,已知⊙O的內接四邊形ABCD是“奇妙四邊形”,作OM⊥BC于M.請猜測OM與AD的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在離水面高度為5m的岸上有人用繩子拉船靠岸,開始繩子與水面的夾角為30°,此人以每秒0.5m的速度收繩.
(1)8秒后船向岸邊移動了多少米?
(2)寫出還沒收的繩子的長度S米與收繩時間t秒的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有兩個可以自由轉動的均勻轉盤,都被分成了3等份,并在每份內均標有數字,如圖所示.規則如下:
①分別轉動轉盤;
②兩個轉盤停止后,將兩個指針所指份內的數字相乘(若指針停止在等份線上,那么重轉一次,直到指針指向某一份為止).
【1】用列表法或樹狀圖分別求出數字之積為3的倍數和數字之積為5的倍數的概率;
【2】小明和小亮想用這兩個轉盤做游戲,他們規定:數字之積為3的倍數時,小明得2分;數字之積為5的倍數時,小亮得3分.這個游戲對雙方公平嗎?請說明理由;認為不公平的,試修改得分規定,使游戲對雙方公平.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com