精英家教網 > 初中數學 > 題目詳情

如圖,MN為⊙O的直徑,A、B是⊙O上的兩點,過A作AC⊥MN于點C,過B作BD⊥MN于點D,P為DC上的任意一點,若MN=20,AC=8,BD=6,則PA+PB的最小值是      .                   

                                                                          


14 .                                                                                          

                                                                                                        

【考點】軸對稱-最短路線問題;勾股定理;垂徑定理.                                 

【專題】壓軸題;探究型.                                                                     

【分析】先由MN=20求出⊙O的半徑,再連接OA、OB,由勾股定理得出OD、OC的長,作點B關于MN的對稱點B′,連接AB′,則AB′即為PA+PB的最小值,B′D=BD=6,過點B′作AC的垂線,交AC的延長線于點E,在Rt△AB′E中利用勾股定理即可求出AB′的值.                                                                        

【解答】解:∵MN=20,                                                                        

∴⊙O的半徑=10,                                                                            

連接OA、OB,                                                                                  

在Rt△OBD中,OB=10,BD=6,                                                            

∴OD===8;                                                     

同理,在Rt△AOC中,OA=10,AC=8,                                                 

∴OC===6,                                                     

∴CD=8+6=14,                                                                                 

作點B關于MN的對稱點B′,連接AB′,則AB′即為PA+PB的最小值,B′D=BD=6,過點B′作AC的垂線,交AC的延長線于點E,                                                                                                

在Rt△AB′E中,                                                                                

∵AE=AC+CE=8+6=14,B′E=CD=14,                                                      

∴AB′===14.                                            

故答案為:14.                                                                            

                                                                          

【點評】本題考查的是軸對稱﹣最短路線問題、垂徑定理及勾股定理,根據題意作出輔助線,構造出直角三角形,利用勾股定理求解是解答此題的關鍵.                                                              


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:


在彈性限度內,彈簧伸長的長度與所掛物體的質量呈正比,某彈簧不掛物體時長15cm,當所掛物體質量為3kg時,彈簧長16.8cm.寫出彈簧長度L(cm)與所掛物體質量x(kg)之間的函數表達式_________

查看答案和解析>>

科目:初中數學 來源: 題型:


如圖,在矩形ABCD中,AD=4cm,AB=10cm,在邊AB上有一點P以2cm/s的速度由A點向B點運動,設P點運動了t秒.                                                                       

(1)用含t的代數式表示BP的值;                                                        

(2)當t為何值時,△APD與△BPC相似.                                           

                                                    

查看答案和解析>>

科目:初中數學 來源: 題型:


如圖,將一張等腰梯形紙片沿中位線剪開,拼成一個新的圖形,這個新的圖形可以是下列圖形中的( 。                 

                                                                                 

A.三角形                   B.平行四邊形             C.矩形                       D.正方形

查看答案和解析>>

科目:初中數學 來源: 題型:


如圖,已知△PDC是⊙O的內接三角形,CP=CD,若將△PCD繞點P順時針旋轉,當點C剛落在⊙O上的A處時,停止旋轉,此時點D落在點B處.                                                                     

(1)求證:PB與⊙O相切;                                                                  

(2)當PD=2,∠DPC=30°時,求⊙O的半徑長.                                    

                                                            

查看答案和解析>>

科目:初中數學 來源: 題型:


計算:|﹣2|+2=      .                                                                

查看答案和解析>>

科目:初中數學 來源: 題型:


某班七個興趣小組人數分別為4,4,5,x,6,6,7.已知這組數據的平均數是5,則這組數據的中位數是(  )                                                                            

A.7                            B.6                            C.5                            D.4

查看答案和解析>>

科目:初中數學 來源: 題型:


根據如圖的程序,計算當輸入時,輸出的結果             

查看答案和解析>>

科目:初中數學 來源: 題型:


閱讀下列材料:

,即,

的整數部分為2,小數部分為

請你觀察上述的規律后試解下面的問題:

如果的小數部分為a, 的小數部分為b,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视