試題分析:(1)根據∠EFB與∠FEB都是弦切角,可得△ABC是等邊三角形,∠ABC=∠BAC=∠ACB=60°,即△BFE為等邊三角形,所以求得∠BAC=∠BFE,∠BCA=∠BEF,可證明EF∥AC;
(2)根據圓切BC于E,EG為直徑,AD=EG,AD⊥BC,可判定四邊形ADEG為矩形;
(3)由(1)(2)的結論,證明AC垂直平分FG;再根據垂徑定理,可知AC必過圓心,又EG為直徑,所以AC與GE的交點O為此圓的圓心.
(1)EF∥AC;
(2)四邊形ADEG為矩形。
理由:∵EG⊥BC,E為切點,
∴EG為直徑,
∴EG=AD
又∵AD⊥BC,EG⊥BC,
∴AD∥EG,即四邊形ADEG為矩形。
(3)連接FG,

由(2)可知EG為直徑,
∴FG⊥EF,
又由(1)可知,EF∥AC,
∴AC⊥FG,
又∵四邊形ADEG為矩形,
∴EG⊥AG,則AG是已知圓的切線。
而AB也是已知圓的切線,則AF=AG,
∴AC是FG的垂直平分線,故AC必過圓心,
因此,圓心O就是AC與EG的交點。
說明:也可據△AGO≌△AFO進行說理。
點評:解答本題的關鍵是要熟練掌握矩形的判定和圓中的有關性質才能靈活的解題.