精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系中,直線分別交x軸、y軸于C、A兩點。將射線AM繞著點A順時針旋轉45°得到射線AN。點D為AM上的動點,點B為AN上的動點,點C在∠MAN的內部。
(1)求線段AC的長;
(2)當軸,且四邊形ABCD為梯形時,求△BCD的面積;
(3)求△BCD周長的最小值;
(4)當△BCD的周長取得最小值,且時,△BCD的面積為_____________。(第(4)問只需填寫結論,不要求書寫過程)
解:(1)∵直線與x軸、y軸分別交于C、A兩點,
∴點C的坐標為,點A的坐標為(0,2)。
∴AC=4。
(2)如圖1,當AD∥BC時,
可知∠DAB=45°,∴∠ABO=45°。∴OB=OA=2。



如圖2,當AB∥DC時,可得
設射線AN交x軸于點E。
∵AD∥x軸,
∴四邊形AECD為平行四邊形。

綜上所述,當AM∥x軸,且四邊形ABCD為梯形時,
(3)如圖3,作點C關于射線AM的對稱點,點C關于射線AN的對稱點。
由軸對稱的性質,可知
連結、
可得

連結。
∵兩點之間線段最短,
∴當B、D兩點與在同一條直線上時,△BCD的周長最小,最小值為線段的長!唷鰾CD的周長的最小值為。
(4)
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•渝北區一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數點(橫、縱坐標均為整數)中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發,在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视