當拋物線的解析式中含有字母系數時,隨著系數中的字母取值的不同,拋物線的頂點坐標也將發生變化.例如:由拋物線y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,
所以拋物線頂點坐標為(m,2m-1),即x=m③,y=2m-1④.
當m的值變化時,x,y的值也隨之變化,因而y的值也隨x值的變化而變化.
將③代入④,得y=2x-1⑤.可見,不論m取任何實數,拋物線頂點的縱坐標y和橫坐標x都滿足關系式:y=2x-1;
根據上述閱讀材料提供的方法,確定點(-2m, m-1)滿足的函數關系式為_______.
(2)根據閱讀材料提供的方法,確定拋物線頂點的縱坐標y與橫坐標x之間的關系式.
科目:初中數學 來源: 題型:解答題
如圖,直線AB分別交y軸、x 軸于A、B兩點,OA=2,,拋物線
過A、B兩點.
(1)求直線AB和這個拋物線的解析式;
(2)設拋物線的頂點為D,求△ABD的面積
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當t 取何值時,MN的長度l有最大值?最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
某農戶計劃利用現有的一面墻(墻長8米),再修四面墻,建造如圖所示的長方體水池,培育不同品種的魚苗.他已備足可以修高為1.5m、長18m的墻的材料準備施工,設圖中與現有一面墻垂直的三面墻的長度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度).
(1)若想水池的總容積為36m3,x應等于多少?
(2)求水池的總容積V與x的函數關系式,并直接寫出x的取值范圍;
(3)若想使水池的總容積V最大,x應為多少?最大容積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖1,已知拋物線y=ax2+bx(a≠0)經過A(3,0)、B(4,4)、D(2, n)三點.
(1)求拋物線的解析式及點D坐標;
(2)點M是拋物線對稱軸上一動點,求使BM-AM的值最大時的點M的坐標;
(3)如圖2,將射線BA沿BO翻折,交y軸于點C,交拋物線于點N,求點N的坐標;
(4)在(3)的條件下,連結ON,OD,如圖2,請求出所有滿足△POD∽△NOB的點P坐標(點P、O、D分別與點N、O、B對應).
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
將進貨單價為30元的商品按40元出售時,每天賣出500件。據市場調查發現,如果這種商品每件漲價1元,其每天的銷售量就減少10件。
(1)要使得每天能賺取8000元的利潤,且盡量減少庫存,售價應該定為多少?
(2)售價定為多少時,每天獲得的利潤最大?最大利潤為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,直線y=x+3與坐標軸分別交于A,B兩點,拋物線y=ax2+bx﹣3a經過點A,B,頂點為C,連接CB并延長交x軸于點E,點D與點B關于拋物線的對稱軸MN對稱.
(1)求拋物線的解析式及頂點C的坐標;
(2)求證:四邊形ABCD是直角梯形.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,已知二次函數的圖象經過點A(6,0)、B(﹣2,0)和點C(0,﹣8).
(1)求該二次函數的解析式;
(2)設該二次函數圖象的頂點為M,若點K為x軸上的動點,當△KCM的周長最小時,點K的坐標為 ;
(3)連接AC,有兩動點P、Q同時從點O出發,其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當P、Q兩點相遇時,它們都停止運動,設P、Q同時從點O出發t秒時,△OPQ的面積為S.
①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關于t的函數關系式,并寫出自變量t的取值范圍;
③設S0是②中函數S的最大值,直接寫出S0的值.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,矩形OABC在平面直角坐標系中,O為坐標原點,點A(0,4),C(2,0),將矩形OABC繞點O按順時針方向旋轉1350,得到矩形EFGH(點E與O重合).
(1)若GH交y軸于點M,則∠FOM= ,OM= ;
(2)矩形EFGH沿y軸向上平移t個單位.
①直線GH與x軸交于點D,若AD∥BO,求t的值;
②若矩形EFHG與矩形OABC重疊部分的面積為S個平方單位,試求當0<t≤時,S與t之間的函數關系式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com