某工廠生產某品牌的護眼燈,并將護眼燈按質量分成15個等級(等級越高,質量越好.如:二級產品好于一級產品).若出售這批護眼燈,一級產品每臺可獲利21元,每提高一個等級每臺可多獲利潤1元,工廠每天只能生產同一個等級的護眼燈,每個等級每天生產的臺數如下表表示:
等級(x級) | 一級 | 二級 | 三級 | … |
生產量(y臺/天) | 78 | 76 | 74 | … |
詳見解析.
解析試題分析:(1)由于護眼燈每天的生產量y(臺)是等級x(級)的一次函數,所以可設y=kx+b,再把代入,運用待定系數法即可求出y與x之間的函數關系式;
(2)根據“一級產品每臺可獲利21元,每提高一個等級每臺可多獲利潤1元”即可直接寫出答案;
(3)設工廠生產x等級的護眼燈時,獲得的利潤為w元.由于等級提高時,帶來每臺護眼燈利潤的提高,同時銷售量下降.而x等級時,每臺護眼燈的利潤為[21+1(x-1)]元,銷售量為y元,根據:利潤=每臺護眼燈的利潤×銷售量,列出w與x的函數關系式,再根據函數的性質即可求出最大利潤.
試題解析:
解:(1)由題意,設y=kx+b.
把(1,78)、(2,76)代入,得,解得
,
∴y與x之間的函數關系式為y=-2x+80.故答案為y=-2x+80;
(2)∵一級產品每臺可獲利21元,每提高一個等級每臺可多獲利潤1元
∴每臺護眼燈可獲利z(元)關于等級x(級)的函數關系式:;
(3)設工廠生產x等級的護眼燈時,獲得的利潤為w元.
由題意,有w=[21+1(x-1)]y
=[21+1(x-1)](-2x+80)
=-2(x-10)2+1800,
所以當x=10時,可獲得最大利潤1800元.
故若工廠將當日所生產的護眼燈全部售出,工廠應生產十級的護眼燈時,能獲得最大利潤,最大利潤是1800元.
考點:二次函數的應用.
科目:初中數學 來源: 題型:解答題
某工廠生產某品牌的護眼燈,并將護眼燈按質量分成15個等級(等級越高,質量越好.如:二級產品好于一級產品).若出售這批護眼燈,一級產品每臺可獲利21元,每提高一個等級每臺可多獲利潤1元,工廠每天只能生產同一個等級的護眼燈,每個等級每天生產的臺數如下表表示:
等級(x級) | 一級 | 二級 | 三級 | … |
生產量(y臺/天) | 78 | 76 | 74 | … |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,拋物線與x軸交于A、B兩點,與y軸交于C點,四邊形OBHC為矩形,CH的延長線交拋物線于點D(5,2),連結BC、AD.
(1)求C點的坐標及拋物線的解析式;(6分)
(2)將△BCH繞點B按順時針旋轉90°后再沿x軸對折得到△BEF(點C與點E對應),判斷點E是否落在拋物線上,并說明理由;(4分)
(3)設過點E的直線交AB邊于點P,交CD邊于點Q.問是否存在點P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點坐標;若不存在,請說明理由. (4分)
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,已知拋物線與直線
交于點
.點
是拋物線上
,
之間的一個動點,過點
分別作
軸、
軸的平行線與直線
交于點
,
.
(1)求拋物線的函數解析式;
(2)若點的橫坐標為2,求
的長;
(3)以,
為邊構造矩形
,設點
的坐標為
,求出
之間的關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
先閱讀以下材料,然后解答問題:
材料:將二次函數的圖象向左平移1個單位,再向下平移2個單位,求平移后的拋物線的解析式(平移后拋物線的形狀不變)。
解:在拋物線上任取兩點A(0,3)、B(1,4),由題意知:點A向左平移1個單位得到
(
,3),再向下平移2個單位得到
(
,1);點B向左平移1個單位得到
(0,4),再向下平移2個單位得到
(0,2)。
設平移后的拋物線的解析式為。
則點(
,1),
(0,2)在拋物線上。
可得:,解得:
。
所以平移后的拋物線的解析式為:。
根據以上信息解答下列問題:
將直線向右平移3個單位,再向上平移1個單位,求平移后的直線的解析式。
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,二次函數的圖象與x軸交于點A(﹣3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.
(1)請直接寫出點D的坐標: ;
(2)當點P在線段AO(點P不與A、O重合)上運動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com