精英家教網 > 初中數學 > 題目詳情

【題目】數軸上點A對應的數為a,點B對應的數為b,點A在負半軸,且|a|=6,b是最小的正偶數.

1)求線段AB的長;

2)若點C在數軸上對應的數為x,且x是方程2x+1=3x9的解,在數軸上是否存在點P,使得PAPBBCAB,若存在,求出點P對應的數,若不存在,說明理由.

3)如圖,若QB點右側一點,QA的中點為MNQB的四等分點且靠近于Q點,當QB的右側運動時,說明:QMBN的值不變,并求出其值.

【答案】18;(2)存在,點P對應的數為-8、4;(34

【解析】

1)先根據條件求出ab的值,再求AB的長;

2)先解方程求出x的值,得出點C在數軸上對應的數,從而得出PA+PB=12,設點P的對應數為m,再分3種情況討論分析,分別列式計算即可;

3)設點Q的對應數為t,用含t的式子表示出QMBN即可證明結論.

解:(1)由題意得:a=-6,b=2

AB=2-(-6)=8;

2)∵2x+1=3x9

解得:x=10

∴點C對應的數為10

BC=10-2=8,AB=2-(-6)=8,

BCAB=12=PAPB

設點P的對應數為m,

①當PA左側時,-6-m+2-m=12,解得,m=-8;

②當PA右側時,6+m+m-2=12,解得,m=4;

③當PAB之間時,PA+PB=8舍去;

∴點P的對應數為-8、4;

3)設點Q的對應數為t,

QA=t-(-6)=t+6QB=t-2

MQA的中點

NQB的四等分點

QMBN的值不變,其值為4.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】旅游公司在景區內配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內最多只能出租一次,且每輛車的日租金x(元)是5的倍數.發現每天的營運規律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.

1)優惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應為多少元?(注:凈收入=租車收入管理費)

2)當每輛車的日租金為多少元時,每天的凈收入最多?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,直線ABDC,點P為平面上一點,連接APCP.

(1)如圖1,點P在直線AB、CD之間,當∠BAP=60°,DCP=20°時,求∠APC.

(2)如圖2,點P在直線AB、CD之間,∠BAP與∠DCP的角平分線相交于點K,寫出∠AKC與∠APC之間的數量關系,并說明理由.

(3)如圖3,點P落在CD外,∠BAP與∠DCP的角平分線相交于點K,AKC與∠APC有何數量關系?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖一塊直角三角板ABC(A=30°)的斜邊AB與一個以r為半徑的圓輪子相靠,BD=1,r等于(  )

A. 2 B. C. 1.5 D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,RtABC,C=90°,O,D分別為AB,BC上的點經過A,D兩點的⊙O分別交AB,AC于點E,F,D為弧EF的中點.

(1)求證:BC與⊙O相切;

(2)當⊙O的半徑r=2,CAD=30°求劣弧AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O為△ABC的內切圓,切點分別為D,E,F,∠C=90°,BC=3,AC=4.

(1)求△ABC的面積;

(2)求⊙O的半徑;

(3)求AF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某文具店,甲種筆記本標價每本8元,乙種筆記本標價每本5元.今天,甲、乙兩種筆記本合計賣了100本,共賣了695!

1)兩種筆記本各銷售了多少?

2)所得銷售款可能是660元嗎?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,CD切⊙O于點E,PCD的周長為12,∠APB=60°

求:(1PA的長;

2)∠COD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題情境:以直線AB上一點O為端點作射線OM、ON,將一個直角三角形的直角頂點放在O(COD=90°).

(1)如圖1,直角三角板COD的邊OD放在射線OB上,OM平分∠AOCONOB重合,則∠MON=_°

(2)直角三角板COD繞點O旋轉到如圖2的位置,OM平分∠AOC,ON平分∠BOD,求∠MON的度數。

(3)直角三角板COD繞點O旋轉到如圖3的位置,OM平分∠ AOC ,ON平分∠BOD,猜想∠MON的度數,并說明理由。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视