【題目】已知:點P(m,4)在反比例函數y=﹣的圖象上,正比例函數的圖象經過點P和點Q(6,n).
(1)求正比例函數的解析式;
(2)求P、Q兩點之間的距離.
【答案】(1)y=-x;(2)15.
【解析】
(1)設正比例函數解析式為y=kx(k≠0),把點P的坐標代入反比例函數解析式求出m的值,從而得到點P的坐標,然后代入正比例函數解析式求解即可;
(2)把點Q的坐標代入正比例函數解析式求出n,根據兩點間的距離公式即可得到結論.
(1)設正比例函數解析式為y=kx(k≠0),
∵點P(m,4)在反比例函數y=-的圖象上,
∴-=4,
解得m=-3,
∴P的坐標為(-3,4),
∵正比例函數圖象經過點P,
∴-3k=4,
解得k=-,
∴正比例函數的解析式為y=-x;
(2)∵正比例函數圖象經過點Q(6,n),
∴n=-×6=-8,
∴點Q(6,-8),
∴P、Q兩點之間的距離==15.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,E、F是對角線AC上兩點,連接BE、BF、DE、DF,則添加下列條件①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四邊形BEDF是菱形的條件有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某藥廠銷售部門根據市場調研結果,對該廠生產的一種新型原料藥未來兩年的銷售進行預測,井建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數關系,其圖象是函數P=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關系:Q=
(1)當8<t≤24時,求P關于t的函數解析式;
(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)
①求w關于t的函數解析式;
②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續生產和銷售的月毛利潤范圍,求此范圍所對應的月銷售量P的最小值和最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數據,以二手轎車交易前的使用時間為標準分為A、B、C、D、E五類,并根據這些數據由甲,乙兩人分別繪制了下面的兩幅統計圖(圖都不完整).
請根據以上信息,解答下列問題:
(1)該汽車交易市場去年共交易二手轎車 輛.
(2)把這幅條形統計圖補充完整.(畫圖后請標注相應的數據)
(3)在扇形統計圖中,D類二手轎車交易輛數所對應扇形的圓心角為 度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與x軸交于點
,與y軸交于點B,拋物線
經過點
.
求k的值和拋物線的解析式;
為x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點
.
若以O,B,N,P為頂點的四邊形OBNP是平行四邊形時,求m的值.
當
時,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數y=的圖象經過點P(4,3)和點B(m,n)(其中0<m<4),作BA⊥x軸于點A,連接PA,PB,OB,已知S△AOB=S△PAB.
(1)求k的值和點B的坐標.
(2)求直線BP的解析式.
(3)直接寫出在第一象限內,使反比例函數大于一次函數的x的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,矩形OABC在平面直角坐標系內的位置如圖所示,點O為坐標原點,點A的坐標為(10,0),點B的坐標為(10,8),已知直線AC與雙曲線y=(m≠0)在第一象限內有一交點Q(5,n).
(1)求直線AC和雙曲線的解析式;
(2)若動點P從A點出發,沿折線AO→OC的路徑以每秒2個單位長度的速度運動,到達C處停止.求△OPQ的面積S與的運動時間t秒的函數關系式,并求當t取何值時S=10.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x﹣4與x軸交于點A,以OA為斜邊在x軸上方作等腰Rt△OAB,并將Rt△AOB沿x軸向右平移,當點B落在直線y=x﹣4上時,Rt△OAB掃過的面積是__.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com