【題目】如圖,在菱形ABCD中,對角線AC與BD相交于點O,AB=8,∠BAD=60°,點E從點A出發,沿AB以每秒2個單位長度的速度向終點B運動,當點E不與點A重合時,過點E作EF⊥AD于點F,作EG∥AD交AC于點G,過點G作GH⊥AD交AD(或AD的延長線)于點H,得到矩形EFHG,設點E運動的時間為t秒
(1)求線段EF的長(用含t的代數式表示);
(2)求點H與點D重合時t的值;
(3)設矩形EFHG與菱形ABCD重疊部分圖形的面積與S平方單位,求S與t之間的函數關系式;
(4)矩形EFHG的對角線EH與FG相交于點O′,當OO′∥AD時,t的值為 ;當OO′⊥AD時,t的值為 .
【答案】(1)EF=t;(2)t=
;(3)
;(4)t=4;t=3.
【解析】
試題分析:(1)由題意知:AE=2t,由銳角三角函數即可得出EF=t;
(2)當H與D重合時,FH=GH=8﹣t,由菱形的性質和EG∥AD可知,AE=EG,解得t=;
(3)矩形EFHG與菱形ABCD重疊部分圖形需要分以下兩種情況討論:①當H在線段AD上,此時重合的部分為矩形EFHG;②當H在線段AD的延長線上時,重合的部分為五邊形;
(4)當OO′∥AD時,此時點E與B重合;當OO′⊥AD時,過點O作OM⊥AD于點M,EF與OA相交于點N,然后分別求出O′M、O′F、FM,利用勾股定理列出方程即可求得t的值.
試題解析:(1)由題意知:AE=2t,0≤t≤4,∵∠BAD=60°,∠AFE=90°,∴sin∠BAD=,∴EF=
t;
(2)∵AE=2t,∠AEF=30°,∴AF=t,當H與D重合時,此時FH=8﹣t,∴GE=8﹣t,∵EG∥AD,∴∠EGA=30°,∵四邊形ABCD是菱形,∴∠BAC=30°,∴∠BAC=∠EGA=30°,∴AE=EG,∴2t=8﹣t,∴t=;
(3)當0≤t≤時,此時矩形EFHG與菱形ABCD重疊部分圖形為矩形EFHG,∴由(2)可知:AE=EG=2t,∴S=EFEG=
t2t=
;
當<t≤4時,如圖1,設CD與HG交于點I,此時矩形EFHG與菱形ABCD重疊部分圖形為五邊形FEGID,∵AE=2t,∴AF=t,EF=
t,∴DF=8﹣t,∵AE=EG=FH=2t,∴DH=2t﹣(8﹣t)=3t﹣8,∵∠HDI=∠BAD=60°,∴tan∠HDI=
,∴HI=
DH,∴S=EFEG﹣
DHHI=
=
;
綜上所述:;
(4)當OO′∥AD時,如圖2,此時點E與B重合,∴t=4;
當OO′⊥AD時,如圖3,過點O作OM⊥AD于點M,EF與OA相交于點N,由(2)可知:AF=t,AE=EG=2t,∴FN=t,FM=t,∵O′O⊥AD,O′是FG的中點,∴O′O是△FNG的中位線,∴O′O=
FN=
t,∵AB=8,∴由勾股定理可求得:OA=
,∴OM=
,∴O′M=
,∵FE=
t,EG=2t,∴由勾股定理可求得:
,∴由矩形的性質可知:
,∵由勾股定理可知:
,∴
,∴t=3或t=﹣6(舍去).
故答案為:t=4;t=3.
科目:初中數學 來源: 題型:
【題目】為了弘揚荊州優秀傳統文化,某中學舉辦了荊州文化知識大賽,其規則是:每位參賽選手回答100道選擇題,答對一題得1分,不答或錯答不得分、不扣分,賽后對全體參賽選手的答題情況進行了相關統計,整理并繪制成如下圖表:
請根據以圖表信息,解答下列問題:
(1)表中m= ,n= ;
(2)補全頻數分布直方圖;
(3)全體參賽選手成績的中位數落在第幾組;
(4)若得分在80分以上(含80分)的選手可獲獎,記者從所有參賽選手中隨機采訪1人,求這名選手恰好是獲獎者的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形網格中每個小正方形的邊長是1個單位長度).
(1)△A1B1C1是△ABC繞點__逆時針旋轉__度得到的,B1的坐標是__;
(2)求出線段AC旋轉過程中所掃過的面積(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知命題“關于x的一元二次方程x2+bx+1=0,當b<0時必有實數解”,能說明這個命題是假命題的一個反例可以是( )
A. b=﹣1 B. b=2 C. b=﹣2 D. b=0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法不正確的是( )
A. 四邊都相等的四邊形是平行四邊形
B. 兩組對角分別相等的四邊形是平行四邊形
C. 對角線互相垂直的四邊形是平行四邊形
D. 兩組對邊分別平行的四邊形是平行四邊形
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com