【題目】如圖,PA,PB分別與⊙O相切于A,B兩點,∠ACB=60°.
(1)求∠P的度數
(2)若⊙O的半徑長為4cm,求圖中陰影部分的面積
【答案】
(1)
解:連接OA、OB,
∵PA、PB是⊙O的切線,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,
又∵∠AOB=2∠C=120°,
∴∠P=360°﹣(90°+90°+120°)=60°.
∴∠P=60°.
(2)
解:連接OP,如圖所示:
∵PA、PB是⊙O的切線,
∴∠APO=∠APB=30°,
在RT△APO中,tan30°=,
∴AP==
=4
cm,
∴S陰影=2S△AOP﹣S扇形=2×(×4×
﹣
)=(16
﹣
)(cm2).
【解析】(1)由PA與PB都為圓O的切線,利用切線的性質得到OA垂直于AP,OB垂直于BP,可得出兩個角為直角,再由同弧所對的圓心角等于所對圓周角的2倍,由已知∠C的度數求出∠AOB的度數,在四邊形PABO中,根據四邊形的內角和定理即可求出∠P的度數.
(2)由S陰影=2×(S△PAO﹣S扇形)則可求得結果.
此題考查了圓的綜合應用,涉及知識點有切線性質,圓心角和圓周角,四邊形內角和以及扇形面積的 求法。
科目:初中數學 來源: 題型:
【題目】如圖,對△ABC紙片進行如下操作: 第1次操作:將△ABC沿著過AB中點D1的直線折疊,使點A落在BC邊上的A1處,折痕D1E1到BC的距離記作h1 , 然后還原紙片;
第2次操作:將△AD1E1沿著過AD1中點D2的直線折疊,使點A落在D1E1邊上的A1處,折痕D1E1到BC的距離記作h2 , 然后還原紙片;
…
按上述方法不斷操作下去…,經過第n次操作后得到的折痕DnEn到BC的距離記作hn , 若h=1,則hn的值不可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形OABC在直角坐標系中,點A的坐標為(5,0),對角線OB= ,反比例函數
經過點C,則k的值等于( )
A.12
B.8
C.15
D.9
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=x2+(1﹣m)x﹣m(其中0<m<1)的圖象與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,對稱軸為直線l.設P為對稱軸l上的點,連接PA、PC,PA=PC
(1)∠ABC的度數為
(2)求P點坐標(用含m的代數式表示)
(3)在坐標軸上是否存在著點Q(與原點O不重合),使得以Q、B、C為頂點的三角形與△PAC相似,且線段PQ的長度最。咳绻嬖,求出所有滿足條件的點Q的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F,G三點,過點D作⊙O的切線BC于點M,切點為N,則DM的長為( 。
A.
B.
C.
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,請畫出以A為一個頂點,另外兩個頂點在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長為3的邊上標注數字3)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數y=2x﹣4的圖象與x軸、y軸分別相交于點A、B,點P在該函數的圖象上,P到x軸、y軸的距離分別為d1、d2 .
(1)當P為線段AB的中點時,求d1+d2的值。
(2)直接寫出d1+d2的范圍,并求當d1+d2=3時點P的坐標。
(3)若在線段AB上存在無數個P點,使d1+ad2=4(a為常數),求a的值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點P是線段AB上與點A不重合的一點,且AP<PB.AP繞點A逆時針旋轉角α(0°<α≤90°)得到AP1 , BP繞點B順時針也旋轉角α得到BP2 , 連接PP1、PP2 .
(1)如圖1,當α=90°時,求∠P1PP2的度數;
(2)如圖2,當點P2在AP1的延長線上時,求證:△P2P1P∽△P2PA;
(3)如圖3,過BP的中點E作l1⊥BP,過BP2的中點F作l2⊥BP2 , l1與l2交于點Q,連接PQ,求證:P1P⊥PQ.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com