【題目】如圖,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,動點P從點C出發,沿CA方向運動,速度是2cm/s,動點Q從點B出發,沿BC方向運動,速度是1cm/s.
(1)幾秒后P、Q兩點相距25cm?
(2)幾秒后△PCQ與△ABC相似?
(3)設△CPQ的面積為S1 , △ABC的面積為S2 , 在運動過程中是否存在某一時刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,則說明理由.
【答案】
(1)解:設x秒后P、Q兩點相距25cm,
則CP=2xcm,CQ=(25﹣x)cm,
由題意得,(2x)2+(25﹣x)2=252,
解得,x1=10,x2=0(舍去),
則10秒后P、Q兩點相距25cm;
(2)解:設y秒后△PCQ與△ABC相似,
當△PCQ∽△ACB時, =
,即
=
,
解得,y= ,
當△PCQ∽△BCA時, =
,即
=
,
解得,y= ,
故 秒或
秒后△PCQ與△ABC相似;
(3)解:△CPQ的面積為S1= ×CQ×CP=
×2t×(25﹣t)=﹣t2+25t,
△ABC的面積為S2= ×AC×BC=375,
由題意得,5(﹣t2+25t)=375×2,
解得,t1=10,t2=15,
故運動10秒或15秒時,S1:S2=2:5.
【解析】(1)設時間為x秒,由路程=速度×時間,易得CP=2xcm,CQ=(25﹣x)cm,再利用勾股定理列方程求得10秒后P、Q兩點相距25cm。
(2)本題由于沒有直接說明對應頂點,所以一定要考慮兩種情況,再由相似三角形對應邊的比相等,可得若當△PCQ∽△ACB時或者當△PCQ∽△BCA時對應邊的比相等,可計算出故 秒或
秒后△PCQ與△ABC相似兩種情況;
(3)由(1)中CP=2xcm,CQ=(25﹣x)cm,根據三角形面積公式可得△CPQ的面積為S1= ×CQ×CP=
×2t×(25﹣t)=﹣t2+25t,
△ABC的面積為S2= ×AC×BC=375,又S1:S2=2:5解得運動10秒或15秒時,S1:S2=2:5。
【考點精析】利用相似三角形的判定與性質對題目進行判斷即可得到答案,需要熟知相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數學 來源: 題型:
【題目】如圖,點A、B在反比例函數 的圖象上,且點A、B的橫坐標分別為a、2a(a>0),AC⊥x軸,垂足為C,且△AOC的面積為2,
(1)求該反比例函數的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.
(1)試判斷直線AB與直線CD的位置關系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發生變化?若不變,請求出其值;若變化,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(背景介紹)勾股定理是幾何學中的明珠,充滿著魅力.千百年來,人們對它的證明趨之若騖,其中有著名的數學家,也有業余數學愛好者.向常春在1994年構造發現了一個新的證法.
(小試牛刀)把兩個全等的直角三角形如圖1放置,其三邊長分別為a、b、c.顯然,∠DAB=∠B=90°,AC⊥DE.請用a、b、c分別表示出梯形ABCD、四邊形AECD、△EBC的面積,再探究這三個圖形面積之間的關系,可得到勾股定理:
S梯形ABCD= ,
S△EBC= ,
S四邊形AECD= ,
則它們滿足的關系式為 ,經化簡,可得到勾股定理.
(知識運用)(1)如圖2,鐵路上A、B兩點(看作直線上的兩點)相距40千米,C、D為兩個村莊(看作兩個點),AD⊥AB,BC⊥AB,垂足分別為A、B,AD=25千米,BC=16千米,則兩個村莊的距離為 千米(直接填空);
(2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一個供應站P,使得PC=PD,請用尺規作圖在圖2中作出P點的位置并求出AP的距離.
(知識遷移)借助上面的思考過程與幾何模型,求代數式最小值(0<x<16)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2-4x-m2=0
(1)求證:該方程有兩個不等的實根;
(2)若該方程的兩實根x1、x2滿足x1+2x2=9,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,用火柴棒擺出一列正方形圖案,第①個圖案用了 4 根,第②個圖案用了 12 根,第③個圖案用了 24 根,按照這種方式擺下去,擺出第⑥個圖案用火柴棒的根數是( )
A. 84 B. 81 C. 78 D. 76
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用代數式表示:
(1)a,b兩數的平方和減去它們乘積的2倍;
(2)a,b兩數的和的平方減去它們的差的平方;
(3)一個兩位數,個位上的數字為a,十位上的數字為b,請表示這個兩位數;
(4)若a表示三位數,現把2放在它的右邊,得到一個四位數,請表示這個四位數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知,
.說明
的理由.
解:∵(已知),
∴________//________(_______________)
∴(_______________)
∵(________),
∴(_______________)
∵(己證),
∴(_______________).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com