精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數y=-
23
x2+bx+c的圖象經過B、C兩點.
(1)求b,c的值.
(2)結合函數的圖象探索:當y>0時x的取值范圍.
分析:(1)根據正方形的性質得到B(2,2),C(0,2),然后把B點和C點坐標代入解析式得到關于b、c的方程組,再解方程組即可;
(2)有(1)得到二次函數解析式為y=-
2
3
x2+
4
3
x+2,再求出拋物線與x軸的交點坐標,然后根據圖象得到當y>0時x的取值范圍.
解答:解:(1)∵正方形OABC的邊長為2,
∴B(2,2),C(0,2),
把B(2,2),C(0,2)代入y=-
2
3
x2+bx+c得
-
2
3
×4+2b+c=2
c=2
,解得
b=
4
3
c=2
;
(2)二次函數解析式為y=-
2
3
x2+
4
3
x+2,
當y=0時,-
2
3
x2+
4
3
x+2=0,解得x1=-1,x2=3,
∴拋物線與x軸的交點坐標為(-1,0),(3,0),
∴當-1<x<3時,y>0.
點評:本題考查了用待定系數法求二次函數的解析式:在利用待定系數法求二次函數關系式時,要根據題目給定的條件,選擇恰當的方法設出關系式,從而代入數值求解.一般地,當已知拋物線上三點時,常選擇一般式,用待定系數法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•渝北區一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數點(橫、縱坐標均為整數)中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發,在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视