【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經過點A、C,與AB交于點D.
(1)求拋物線的函數解析式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.
①求S關于m的函數表達式;
②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.
【答案】(1)拋物線的解析式為y=﹣x2+
x+8;(2)①S=﹣
m2+3m;②滿足條件的點F共有四個,坐標分別為F1(
,8),F2(
,4),F3(
,6+
),F4(
,6﹣
).
【解析】
(1)運用待定系數法求解;(2)①根據三角函數值性質得;②求函數的最值,根據拋物線性質求出D,Q的坐標,根據直角的位置有3種可能,展開分析,解直角三角形.
(1)將A、C兩點坐標代入拋物線,得
,
解得:,
∴拋物線的解析式為y=
(2)①∵OA=8,OC=6,
∴AC=
過點Q作QE⊥BC與E點,則sin∠ACB=
②
∴當m=5時,S取最大值;
在拋物線對稱軸l上存在點F,使△FDQ為直角三角形,
∵拋物線的解析式為y=的對稱軸為x=
,
D的坐標為(3,8),Q(3,4),
當∠FDQ=90°時,F1(,8),
當∠FQD=90°時,則F2(,4),
當∠DFQ=90°時,設F(,n),
則FD2+FQ2=DQ2,
即 +(8﹣n)2+
+(n﹣4)2=16,
解得:n=6±,
∴F3(,6+
),F4(
,6﹣
),
滿足條件的點F共有四個,坐標分別為
F1(,8),F2(
,4),F3(
,6+
),F4(
,6﹣
).
科目:初中數學 來源: 題型:
【題目】小明購買A,B兩種商品,每次購買同一種商品的單價相同,具體信息如下表:
次數 | 購買數量(件 | 購買總費用(元 | |
A | B | ||
第一次 | 2 | 1 | 55 |
第二次 | 1 | 3 | 65 |
根據以上信息解答下列問題:
(1)求A,B兩種商品的單價;
(2)若第三次購買這兩種商品共12件,且A種商品的數量不少于B種商品數量的2倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小敏學習之余設計了一個求函數表達式的程序,具體如圖所示,則當輸入下列點的坐標時,請按程序指令解答.
(1)P1(1,0),P2(﹣3,0).
(2)P1(2,﹣1),P2(4,﹣3)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為測量學校旗桿AB的高度,小明從旗桿正前方6米處的點C出發,沿坡度為i=1:的斜坡CD前進2
米到達點D,在點D處放置測角儀DE,測得旗桿頂部A的仰角為30°,量得測角儀DE的高為1.5米.A、B、C、D、E在同一平面內,且旗桿和測角儀都與地面垂直.
(1)求點D的鉛垂高度(結果保留根號);
(2)求旗桿AB的高度(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學興趣小組的同學們,想利用自己所學的數學知識測量學校旗桿的高度:下午活動時間,興趣小組的同學們來到操場,發現旗桿的影子有一部分落在了墻上(如圖所示).同學們按照以下步驟進行測量:測得小明的身高1.65米,此時其影長為2.5米;在同一時刻測量旗桿影子落在地面上的影長BC為9米,留在墻上的影高CD為2米,請你幫助興趣小組的同學們計算旗桿的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣4,1),B(﹣1,3),C(﹣1,1)
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C1;平移△ABC,若A對應的點A2坐標為(﹣4,﹣5),畫出△A2B2C2;
(2)若△A1B1C1繞某一點旋轉可以得到△A2B2C2,直接寫出旋轉中心坐標 .
(3)在x軸上有一點P使得PA+PB的值最小,直接寫出點P的坐標 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中點O為坐標原點,AB所在直線為x軸建立的平面直角線坐標系中,將△ABC繞點B順時針旋轉,使點A旋轉至y軸正半軸上的A′處,則圖中陰影部分面積為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在銳角△ABC中,延長BC到點D,點O是AC邊上的一個動點,過點O作直線MN∥BC,MN分別交∠ACB、∠ACD的平分線于E,F兩點,連接AE、AF,在下列結論中:①OE=OF;②CE=CF;③若CE=12,CF=5,則OC的長為6;④當AO=CO時,四邊形AECF是矩形.其中正確的是( 。
A. ①④B. ①②C. ①②③D. ②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為美化校園,計劃對面積為400平方米的花壇區域進行綠化,安排甲工程隊或乙工程隊完成.已知甲隊平均每天完成綠化的面積是乙隊的2倍,并且甲隊比乙隊能少用4天完成任務,求甲、乙兩工程隊平均每天能完成綠化的面積分別是多少平方米?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com