【題目】在平面直角坐標系xOy中,對于點P(x,y)和Q(x,y′),給出如下定義:若y′= ,則稱點Q為點P的“可控變點”。例如:點(1,2)的“可控變點”為點(1,2).
結合定義,請回答下列問題:
(1)點(3,4)的“可控變點”為點 ___.
(2)若點N(m,2)是函數y=x1圖象上點M的“可控變點”,則點M的坐標為___;
(3)點P為直線y=2x2上的動點,當x0時,它的“可控變點”Q所形成的圖象如圖所示(實線部分含實心點).請補全當x<0時,點P的“可控變點”Q所形成的圖象.
【答案】(1)(3,4);(2)(2)(3,2)或(1,2);(3)見解析;
【解析】
(1)根據“可控變點”的定義可得點(-3,4)的“可控變點”的坐標;
(2)分兩種情況進行討論:當m≥0時,點M的縱坐標為2,令2=x-1,則x=3,即M(3,2);當m<0時,點M的縱坐標為-2,令-2=x-1,則x=3,即M(-1,-2);
(3)根據P(x,2x-2),當x<0時,點P的“可控變點”Q為(x,-2x+2),可得Q的縱坐標為-2x+2,即Q的坐標符合函數解析式y=-2x+2,據此可得當x<0時,點P的“可控變點”Q所形成的圖象.
(1)根據“可控變點”的定義可得,點(3,4)的“可控變點”為點(3,4);
故答案為:(3,4);
(2)∵點N(m,2)是函數y=x1圖象上點M的“可控變點”,
∴①當m0時,點M的縱坐標為2,令2=x1,則x=3,即M(3,2);
②當m<0時,點M的縱坐標為2,令2=x1,則x=3,即M(1,2);
∴點M的坐標為(3,2)或(1,2);
故答案為:(3,2)或(1,2);
(3)∵點P為直線y=2x2上的動點,
∴P(x,2x2),
當x<0時,點P的“可控變點”Q為(x,2x+2),
即Q的縱坐標為2x+2,即Q的坐標符合函數解析式y=2x+2,
∴當x<0時,點P的“可控變點”Q所形成的圖象如下圖;
科目:初中數學 來源: 題型:
【題目】已知A是雙曲線在第一象限上的一動點,連接AO并延長交另一分支于點B,以AB為
邊作等邊三角形ABC,點C在第四象限,已知點C的位置始終在一函數圖象上運動,則這個函數解
析式為( )
A. y=﹣ B. y=﹣
(x>0) C. y=﹣6x(x>0) D. y= 6x(x>0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點為線段
延長線上的一點,點
是
的中點,且點
不與點
重合,
,設
.
①若
,如圖2,則
;
②用含的代數式表示
的長,直接寫出答案;
,
;
若點
為線段
上一點,且
,你能說明點
是線段
的中點嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2018年3月全國兩會政府工作報告進一步強調“房子是用來住的,不是用來炒的”定位,繼續實行差別化調控。這一年被稱為史上房地產調控政策最密集、最嚴厲的年份。因此,房地產開發公司為了緩解年終資金周轉和財務報表的壓力,通常在年底大量促銷。重慶某房地產開發公司一方面在“高層、洋房、別墅”三種業態的地產產品中作特價活動;另一方面,公司制定了銷售刺激政策,對賣出特價的員工進行個人獎勵:每賣出一套高層特價房獎勵1萬元,每賣出一套洋房特價房獎勵2萬元,每賣出一套別墅特價房獎勵4萬元.公司將銷售人員分成三個小組,經統計,第一組平均每人售出6套高層特價房、4套洋房特價房、3套別墅特價房;第二組平均每人售出2套高層特價房、2套洋房特價房、1套別墅特價房;第三組平均每人售出8套高層特價房、5套洋房特價房。這三組銷售人員在此次活動中共獲得獎勵466萬元,其中通過銷售洋房特價房所獲得的獎勵為216萬元,且第三組銷售人員的人數不超過20人。則第三組銷售人員的人數比第一組銷售人員的人數多___人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,已知
,
,
,試把下面運用“疊合法”說明
和
全等的過程補充完整:
說理過程:把放到
上,使點A與點
重合,因為 ,所以可以使 ,并使點C和
在AB(
)同一側,這時點A與
重合,點B與
重合,由于 ,因此, ;
由于 ,因此, ;于是點C(射線AC與BC的交點)與點(射線
與
的交點)重合,這樣 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點,CD平分∠ACB交⊙O于點D.
(1)AD與BD相等嗎?為什么?
(2)若AB=10,AC=6,求CD的長;
(3)若P為⊙O上異于A、B、C、D的點,試探究PA、PD、PB之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,大長方形被分割成4個標號分別為(1)(2)(3)(4)的小正方形和5個小長方形,其中標號為(5)的小長方形的周長為a,則大長方形的周長為( )
A.3aB.4aC.5aD.6a
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B在數軸上表示的數分別為-2與+6,動點P從點A出發,沿A→B以每秒2個單位長度的速度向終點B運動,同時,動點Q從點B出發,沿B→A以每秒4個單位長度的速度向終點A運動,當一個點到達時,另一點也隨之停止運動.
(1)當Q為AB的中點時,求線段PQ的長;
(2)當Q為PB的中點時,求點P表示的數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場準備購進A、B兩種商品進行銷售,若A種商品的進價比B種商品的進價每件少 5元,且用 90元購進A種商品的數量比用100元購進B種商品的數量多1件.
(1)求A、B兩種商品的進價每件分別是多少元?
(2)若該商場購進A種商品的數量是B種商品數量的3倍少4 件,兩種商品的總件數不超過96件;A種商品的銷售價格為每件30元,B種商品的銷售價格為每件38元,兩種商品全部售出后,可使總利潤超過1200元.該商場購進A、B兩種商品有哪幾種方案?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com