【題目】關于x的方程|m-1|x2+2x-3=0.
(1)求證:當m≠1時,原方程總有兩個不相等的實數根;
(2)若原方程的一個根是1,求此時m的值及方程的另一個根.
【答案】(1)見解析;(2)m=2或0,方程的另一個根為x2=-3.
【解析】
(1) 只要證明當m≠1時,判別式總大于0即可;
(2) 將x=2代入方程求出m,再解方程可求另一個根.
解:(1)∵m≠1
∴|m-1|;方程|m-1|x2+2x-3=0是一元二次方程
由題可知:a=|m-1|,b=2,c=-3,
△=b2-4ac=42-4|m-1|(-3)=16+12|m-1|>0,
∴當m≠1時,原方程總有兩個不相等的實數根;
(2)將x=1代入方程,有|m-1|+2-3=0,解得:m=2或0,
此時原方程為:x2+2x-3=0,
∴(x-1)(x+3)=0
∴x1=1,x2=-3,
因此方程的另一個根為x2=-3.
科目:初中數學 來源: 題型:
【題目】某水果批發商場經銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經市場調查發現,在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應漲價多少元?
(2)若該商場單純從經濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在線段AB上找一點C,C把AB分為AC和CB兩段,其中BC是較小的一段,如果BC·AB=AC2,那么稱線段AB被點C黃金分割。
為了增加美感,黃金分割經常被應用在繪畫、雕塑、音樂、建筑等藝術領域。如圖2,在我國古代紫禁城的中軸線上,太和門位于太和殿與內金水橋之間靠近內金水橋的一側,三個建筑的位置關系滿足黃金分割,已知太和殿到內金水橋的距離約為100丈,求太和門到太和殿之間的距離(的近似值取2.2)。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列這些美麗的圖案都是在“幾何畫板”軟件中利用旋轉的知識在一個圖案的基礎上加工而成的,每一個圖案都可以看作是它的“基本圖案”繞著它的旋轉中心旋轉得來的,旋轉的角度正確的為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一塊直角三角板ABC中,∠C=90°,∠A=30°,BC=1,將另一個含30°角的△EDF的30°角的頂點D放在AB邊上,E、F分別在AC、BC上,當點D在AB邊上移動時,DE始終與AB垂直,若△CEF與△DEF相似,則AD= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象過點(﹣2,0),對稱軸為直線x=1.有以下結論:
①abc>0;
②8a+c>0;
③若A(x1,m),B(x2,m)是拋物線上的兩點,當x=x1+x2時,y=c;
④點M,N是拋物線與x軸的兩個交點,若在x軸下方的拋物線上存在一點P,使得PM⊥PN,則a的取值范圍為a≥1;
⑤若方程a(x+2)(4﹣x)=﹣2的兩根為x1,x2,且x1<x2,則﹣2≤x1<x2<4.
其中結論正確的有( 。
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC 的一邊長為 10,另兩邊長分別是方程 x2 14 x 48 0 的兩個根若用一圓形紙片將此三角形完全覆蓋,則該圓形紙片的最小半徑是_______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班“數學興趣小組”對函數的圖象和性質進行了探究,探究過程如下,請補充完整.
(1)自變量的取值范圍是全體實數,
與
的幾組對應值列表:
其中,________.
(2)根據表格數據,在如圖所示的平面直角坐標系中描點,并畫出了函數圖象的一部分,請畫出該圖象的另一部分.
(3)觀察函數圖象,寫出兩條函數的性質:
________;
________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com