精英家教網 > 初中數學 > 題目詳情

【題目】如圖,正△ABC的邊長為4,點P為BC邊上的任意一點(不與點B、C重合),且∠APD=60°,PD交AB于點D.設BP=x,BD=y,則y關于x的函數圖象大致是( 。

A.
B.
C.
D.

【答案】C
【解析】解:∵△ABC是正三角形,
∴∠B=∠C=60°,
∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,
∴∠BPD=∠CAP,
∴△BPD∽△CAP,
∴BP:AC=BD:PC,
∵正△ABC的邊長為4,BP=x,BD=y,
∴x:4=y:(4﹣x),
∴y=﹣ x2+x.
故選C.
由△ABC是正三角形,∠APD=60°,可證得△BPD∽△CAP,然后由相似三角形的對應邊成比例,即可求得答案.此題考查了動點問題、二次函數的圖象以及相似三角形的判定與性質.注意證得△BPD∽△CAP是關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是(  )

A.6
B.2 +1
C.9
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,△ABC中,∠ABC=45°,AH⊥BC于點H,點D在AH上,且DH=CH,連結BD.

(1)求證:BD=AC;
(2)將△BHD繞點H旋轉,得到△EHF(點B,D分別與點E,F對應),連接AE.
①如圖②,當點F落在AC上時,(F不與C重合),若BC=4,tanC=3,求AE的長;
②如圖③,當△EHF是由△BHD繞點H逆時針旋轉30°得到時,設射線CF與AE相交于點G,連接GH,試探究線段GH與EF之間滿足的等量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,一次函數y=kx+b(k、b為常數,k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數y= (n為常數且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂直為D,若OB=2OA=3OD=6.

(1)求一次函數與反比例函數的解析式;
(2)求兩函數圖象的另一個交點坐標;
(3)直接寫出不等式;kx+b≤ 的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在﹣2,﹣1,0,1,2這五個數中任取兩數m,n,則二次函數y=(x﹣m)2+n的頂點在坐標軸上的概率為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l:y=x+2交x軸于點A,交y軸于點A1 , 點A2 , A3 , …在直線l上,點B1 , B2 , B3 , …在x軸的正半軸上,若△A1OB1 , △A2B1B2 , △A3B2B3 , …,依次均為等腰直角三角形,直角頂點都在x軸上,則第n個等腰直角三角形AnBn1Bn頂點Bn的橫坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O為坐標原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數y= 在第一象限內的圖象經過點A,與BC交于點F,則△AOF的面積等于( 。

A.60
B.80
C.30
D.40

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,以△ABC的邊AB為直徑的⊙O交邊BC于點E,過點E作⊙O的切線交AC于點D,且ED⊥AC.

(1)試判斷△ABC的形狀,并說明理由;
(2)如圖2,若線段AB、DE的延長線交于點F,∠C=75°,CD=2﹣ ,求⊙O的半徑和BF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現以線段OA,OB為斜邊向∠MON的外側作等腰直角三角形,分別是△OAP,△OBQ,點C,D,E分別是OA,OB,AB的中點.

(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點R.
①如圖1,若∠MON=150°,求證:△ABR為等邊三角形;
②如圖3,若△ARB∽△PEQ,求∠MON大小和 的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视