【題目】如圖,在平面直角坐標系中,三個頂點的坐標分別為A(2,3)、B(1,1)、C(5,1).
(1)把平移后,其中點
移到點
,面出平移后得到的
;
(2)把繞點
按逆時針方向旋轉
,畫出旋轉后得到的
,并求出旋轉過程中點
經過的路徑長(結果保留根號和
).
科目:初中數學 來源: 題型:
【題目】某商店銷售一種商品,經市場調查發現,該商品的周銷售量(件)是售價
(元/件)的一次函數.其售價、周銷售量、周銷售利潤
(元)的三組對應值如下表:
售價 | 50 | 60 | 80 |
周銷售量 | 100 | 80 | 40 |
周銷售利潤 | 1000 | 1600 | 1600 |
注:周銷售利潤=周銷售量×(售價-進價)
(1)求關于
的函數解析式(不寫出自變量的取值范圍);
(2)該商品進價是 元/件;求售價是多少元/件時,周銷售利潤最大,最大利潤是多少元?
(3)由于某種原因,該商品進價提高了元/件(
),物價部門規定該商品售價不得超過65元/件.該商店在今后的銷售中,周銷售量與售價仍然滿足(1)中函數關系.若周銷售最大利潤是1400元,則
的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形 OABC 為菱形,點 C 的坐標為(4,0),∠AOC = 60°,垂直于 x 軸的直線 l 從 y 軸出發,沿 x 軸正方向以每秒 1 個單位長度的速度運動,設直線 l 與 菱形 OABC 的兩邊分別交與點 M、N(點 M 在點 N 的上方).
(1)求 A、B 兩點的坐標;
(2)設 OMN 的面積為 S,直線 l 運動時間為 t 秒(0 ≤t ≤6 ),試求 S 與 t 的函數表達 式;
(3)在題(2)的條件下,t 為何值時,S 的面積最大?最大面積是多少.
查看答案和解析>>
科目:
來源: 題型:【題目】如圖,四邊形ABCD中,AC,BD是對角線,△ABC是等邊三角形.線段CD繞點C順時針旋轉60°得到線段CE,連接AE.
(1)求證:AE=BD;
(2)若∠ADC=30°,AD=3,BD=4.求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若二次函數的圖象的頂點在
的圖象上,則稱
為
的伴隨函數,如
是
的伴隨函數.
(1)若函數是
的伴隨函數,求
的值;
(2)已知函數是
的伴隨函數.
①當點(2,-2)在二次函數的圖象上時,求二次函數的解析式;
②已知矩形,
為原點,點
在
軸正半軸上,點
在
軸正半軸上,點
(6,2),當二次函數
的圖象與矩形
有三個交點時,求此二次函數的頂點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉90°后得到△A1OB1.
(1)畫出△A1OB1;
(2)在旋轉過程中點B所經過的路徑長為______;
(3)求在旋轉過程中線段AB、BO掃過的圖形的面積之和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線y=x﹣1交于A、B兩點,直線AB與拋物線的對稱軸交于點E.
(1)求拋物線的解板式.
(2)點P在直線AB上方的拋物線上運動,若△ABP的面積最大,求此時點P的坐標.
(3)在平面直角坐標系中,以點B、E、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,圓心為P(x,y)的動圓經過點A(1,2)且與x軸相切于點B.
(1)當x=2時,求⊙P的半徑;
(2)求y關于x的函數解析式;判斷此函數圖象的形狀;并在圖②中畫出此函數的圖象;
(3)當⊙P的半徑為1時,若⊙P與以上(2)中所得函數圖象相交于點C、D,其中交點D(m,n)在點C的右側,請利用圖②,求cos∠APD的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com